ВЛИЯНИЕ МИКРОБНОЙ КАРБОНАТНОЙ МИНЕРАЛИЗАЦИИ НА ГИДРОФОБНОСТЬ ПОВЕРХНОСТИ ЦЕМЕНТНОГО КАМНЯ
Аннотация и ключевые слова
Аннотация (русский):
Теоретически обосновано и экспериментально подтверждено влияние микробной карбонатной минерализации на повышение гидрофобности поверхности цементного камня. Описаны изменения морфологии поверхности цементного камня за счет сформированных в процессе биоминерализации в постгенетический период кристаллических новообразований. Показано, что биокольматация межпорового пространства цементного камня кристаллическими новообразованиями приводит к повышению гидрофобности, о чем свидетельствует увеличение значения контактного угла смачивания. По данным химического и морфологического анализа биоиндуцированных новообразований на поверхности образцов, а также результатам оценки изменения контактного угла смачивания по сравнению с исходным показателем для цементного камня, бактериальные культуры проранжированы в порядке повышения эффективности использования для осаждения карбоната кальция при их участии, а также повышения гидрофобности цементных материалов в следующей последовательности: S. pasteurii  B. megaterium  L. sphaericus  B. pumilus.

Ключевые слова:
карбонатная биоминерализация, бактериальная культура, цементная матрица, контактный угол смачивания, гидрофобность, кольматация
Текст
Текст произведения (PDF): Читать Скачать

Введение. Одной из активно развивающихся технологий сохранения и восстановления строительных материалов является микробно-индуцированное осаждение карбоната кальция [1–4]. Вовлечение бактериальных агентов в карбонатогенез представляет особый интерес, поскольку может быть использован как метод селективной биологической кольматации и/или инкрустации (обрастание) как порового пространства цементной матрицы, так и поверхности цементного композита. Биокольматация порового пространства происходит в несколько этапов, начиная от прикрепления отдельных клеток бактериального штамма к твердому субстрату, до полного обрастания поры кристаллами карбоната кальция [2, 5]. Результатом такого обрастания и закупорки пор цементного камня является как снижение пористости и, как следствие водопроницаемости [6, 7, 8], так и изменение характера микрорельефа поверхности, что влечет за собой изменение степени гидрофобности поверхности, оцениваемую контактным углом смачивания.

Исследованиями, выполненными рядом научных групп, была показана эффективность залечивания микротрещин цементных материалов, проявляющаяся в виде формирования крупнокристаллических по сравнению с продуктами гидратации новообразований карбонатов кальция в постгенетический период [9], проанализировано влияние биоминерализации в трещинах на изменение прочности материалов [10, 11], изучены технологические особенности работы с бактериальным инокулятом при его использовании [12]. Однако вопрос влияния карбонатной биоминерализации на изменение микроструктуры и гидрофобности поверхности цементных материалов в зависимости от вида бактерий и применяемых видов и концентраций прекурсоров остается открытым.

Ранее нами был проведен обобщающий анализ видов микроорганизмов, применяемых для карбонатной биоминерализации при восстановлении строительных материалов [12], который определил выбор применяемых бактерий Lysinibacillus sphaericus, Bacillus megaterium, Bacillus pumilus, Sporosarcina pasteurii в исследованиях по следующим критериям: отсутствие патогенности, высокая уреазная активность, карбонатогенная продуцирующая способность, высокая выживаемость в щелочных условиях, способность образовывать эндоспоры, устойчивые к высоким температурам, химическим веществам и ультрафиолетовому излучению. Проанализирована динамика роста вышеуказанных бактериальных штаммов при одномоментном добавлении питательных веществ и доступности кислорода [13], произведена оценка метаболической уреазной активности по изменению уровня рН в жидкой модельной среде в зависимости от вида и концентрации применяемых прекурсоров, установлено влияние компонентов среды и вида бактериального штамма на морфологию кристаллических новообразований.

В последующем для исключения влияния продуктов гидратации на процессы карбонатной бактериальной минерализации исследование проводилось на модельной системе «бактерии – кварцевый песок». Результатами эксперимента подтверждается интенсивность литификации кварцевого песка в зависимости от его дисперсности.

Методология. Для комплексного изучения процессов бактериального карбонатогенезиса в строительном материале, понимания механизмов биокарбонизации, а также выявления перспективных бактериальных культур и прекурсоров, взаимодействующих с цементной матрицей, следующим этапом работы стало инкубирование исследуемых бактериальных культур на поверхности цементного камня. Для этого готовили образцы-кубы с размером ребра 10 мм с В/Ц 0,4 с использованием портландцемента марки
ЦЕМ
I 42,5 Н и водопроводной воды. Для чистоты эксперимента и исключения влияния других микроорганизмов на ход исследования используемые материалы проходили предварительную деконтаминационную обработку до введения бактериальных культур: водопроводная вода с растворенным CaCl2 – методом автоклавирования; CH4N2O – воздушным методом в сухожаровом шкафу; образцы-кубы – методом УФ-стерилизации. Для ускоренного достижения заданных нормативных значений прочности цементных образцов применяли тепловлажностную обработку по режиму 1,5+6+1,5 ч при 60 °С.

В качестве исследуемых бактериальных культур применяли инокуляты бактериальных штаммов Всероссийской коллекции микроорганизмов Института биохимии и физиологии микроорганизмов им Г.К. Скрябина Российской академии наук рода: Lysinibacillus sphaericus (VKМ B-509), Bacillus megaterium (VKМ B-40), Bacillus pumilus (VKМ B-23), Sporosarcina pasteurii (VKМ В-513).

Для инициации бактериального карбонатогенезиса на поверхности бетонной матрицы в качестве прекурсоров использовали CaCl2 (20 г/л) и CH4N2O (20 г/л), растворенные в дистиллированной воде, генерирующие щелочные условия для метаболической активности бактерий.

Процессы биоминерализации стимулировали путем полного погружения образцов в модельную среду с бактериальным инокулятом и прекурсорами в чаши Петри, в которых они находились в течение 28 суток с обновлением бактерий и растворов прекурсоров через каждые 3 дня, с целью поддержания заданного начального уровня концентрации.

Для оценки возможного влияния прекурсоров без бактериального воздействия на изменение контактного угла смачивания, образцы цементного камня выдерживали при тех же параметрах, но в растворах хлорида кальция и мочевины без бактериального инокулята (контроль 2). Для сравнительного анализа использовали образцы цементного камня, не подверженные воздействию бактерий и прекурсоров (контроль 1).

Микроструктурные изменения цементного камня и морфологию новообразованных кристаллов изучали с помощью сканирующего электронного микроскопа TESCAN MIRA 3 LMU, включающего энергодисперсионный спектрометр (ЭДС) X-MAX 50 Oxford Instruments NanoAnalysis для электронно-зондового микроанализа, где источник электронов – Катод Шоттки высокой яркости.

Измерение контактного угла смачивания на поверхности образцов проводили при помощи прибора Kruss DSA 30. В качестве рабочей жидкости для измерений использовали дистиллированную воду. Для получения среднего значения контактного угла смачивания производили измерения на шести гранях образцов-кубов.

Основная часть. Анализ полученных данных в совокупности с ранее проведенными исследованиями [8] и литературными данными [12] показал, что микробно-индуцированное осаждение карбоната кальция на поверхности цементной матрицы происходит в несколько этапов:

  • после помещения образцов цементного камня в чаши Петри за счет капиллярного подсоса происходит их объемная пропитка раствором прекурсоров с инокулятом. Глубина пропитки определяется плотностью, пористостью и особенностями микроструктуры порового пространства;
  • в результате процесса адсорбции на поверхности цементной матрицы происходит колонизация микробиоты, а в поровом пространстве фиксация бактериальных клеток;
  • растворенные прекурсоры инициируют биохимический процесс метаболической деятельности бактериальных штаммов, стимулируя уреазную активность бактерий. В результате разложения мочевины происходит локальное повышение рН, прекурсоры увеличивают выживаемость клеток в щелочных условиях;
  • происходит гетерогенная нуклеация зародышей кристаллов в межпоровом пространстве и рост новообразований.

Согласно вышеприведенным этапам в результате воздействия на цементную матрицу бактериальных агентов, инициирующих процессы карбонатной минерализации, происходит, во-первых, биокольматация порового пространства, степень которой зависит от уровня пропитки цементной матрицы, и во-вторых, инкрустация поверхности образца новообразованиями различной морфологии и минерального состава в зависимости от вида бактериального агента.

Изучение микроструктурных особенностей поверхности образцов показало, что в отличие от исходного (контроль 1) цементного камня (рис. 1, а), образец, выдержанный в растворе прекурсоров (контроль 2), характеризуется глобулярной структурой новообразований, покрывающих цементный камень (рис. 1, б). Вероятно, происходит осаждение растворенных прекурсоров без карбонизации. Задействование в эксперименте бактерий привело к формированию кристаллических новообразований, имеющих преимущественно ромбоэдрическую форму с четкими гранями, чаще субмикронного размера (рис. 1, в–е). Хорошо прослеживаются структуры роста и двойники, что свидетельствует о постгенетическом по отношению к цементному камню формировании данных кристаллов. Среди четырех видов использованных бактерий, наименее продуктивными, с точки зрения роста идентифицируемых с помощью микрофотоснимков кристаллов, показали себя бактерии рода B. megaterium (рис. 1, г).

 

 

а) контроль 1

б) контроль 2

г) B. megaterium

в) S. pasteurii

д) L. sphaericus

е) B. pumilus

Рис. 1. Морфология поверхности цементного камня (а), новообразований после выдержки в растворе
прекурсоров (б), новообразований индуцированных бактериями (в–е)

По данным энергодисперсионного микроанализа, проведенного на растровом электронном микроскопе, новообразований, сформированных на поверхности образцов цементного камня в присутствии бактериальных штаммов, максимальным содержанием кальция характеризуются новообразования, полученные в процессе индукции при воздействии бактериального штамма B. pumilus – 40 % (табл. 1). При введении инокулятов бактерий L. sphaericus и B. megaterium в образцах получены практически одинаковые результаты по содержанию кальция –
36 %. Менее эффективной бактериальной культурой в процессах биоиндуцирования карбоната кальция показала себя
S. Pasteurii, о чем свидетельствуют полученные данные о суммарном содержании кальция, приближенные к значениям контрольного образца 2, выдержанного в растворе прекурсоров без инокулята – 33 %.

Обрастание цементного камня кристаллическими новообразованиями, произошедшее в процессе карбонатной биоминерализации, привело к структурно-морфологическим изменениям и, как следствие, к изменению микрорельефа – формированию микро- и макрошероховатостей. Следствием этих процессов явилось изменение гидрофобности поверхности цементного камня, о чем свидетельствует увеличение контактного угла смачивания (КУ) [14–15]. Так, на исходном не обработанном бактериальным инокулятом и раствором с прекурсорами образце цементного камня (контроль 1) среднее значение контактного угла смачивания составляет 45° (табл. 2). Выдержка образца цементного камня в растворе прекурсоров и последующая сушка в естественных условиях привела к изменению морфологии его поверхности, обусловленному осаждением хлорида кальция и мочевины, вследствие чего увеличился контактный угол (КУ=51°). Выдержка цементного камня в растворах прекурсоров с бактериальными инокулятами B. megaterium, L. sphaericus, B. pumilus спровоцировала процессы карбонатной минерализации, в результате чего в межпоровом пространстве и на поверхности образцов произошла кристаллизация карбоната кальция. Следствием этих процессов явилось наблюдаемое увеличение контактного угла смачивания (табл. 2), средние значения которого составили 55°, 71° и 81° соответственно. Среднее значение контактного угла смачивания на образце с бактериальным штаммом S. pasteurii составило 48°, что несколько выше контрольного образца, однако ниже значения, установленного для цементного камня, выдержанного в растворе прекурсоров без бактериального воздействия. Этот факт можно объяснить самой низкой среди изученных бактериальных культур интенсивностью карбонатной минерализации и, следовательно, постгенетической инкрустацией, проявляющейся незначительным изменением рельефа поверхности образцов.

 

Таблица 1

Количественное содержание кальция в образцах

Наименование образцов

Концентрация Са, %

Цементный камень

выдержанный в растворе прекурсоров

(контроль 2)

34

выдержанный в бактериальном
 инокуляте с растворами прекурсоров

S. pasteurii

33

B. megaterium

35

L. sphaericus

36

B. pumilus

40

 

 

Таблица 2

Характер изменения контактного угла смачивания в зависимости от состава
образцов цементного камня

Наименование образцов

Среднее значение контактного угла смачивания, градус

Цементный камень

Контроль 1

45

выдержанный в растворе прекурсоров (контроль 2)

51

выдержанный в бактериальном инокуляте с растворами
прекурсоров

S. pasteurii

48

B. megaterium

55

L. sphaericus

71

B. pumilus

81

 

 

Сравнительный анализ позволил установить связь между интенсивностью карбонатной биоминерализации, характеризующейся содержанием кальция по данным микроанализа, и средним значением контактного угла смачивания (рис. 2).

Рис. 2. Изменение концентрации кальция (по данным химического анализа) в новообразованиях и среднего
значения контактного угла смачивания на поверхности цементного камня от вида бактериальной культуры

Выводы. Таким образом, в ходе исследования было показано, что в результате микробной карбонатной минерализации, которой подвергались образцы цементного камня, происходит биокольматация пор на глубину пропитки матрицы, инкрустация биоиндуцированными кристаллами карбоната кальция поверхности образцов и создание более развитого микрорельефа по сравнению с контрольным цементным камнем. Следствием карбонатной биоминерализации является повышение гидрофобности, о чем свидетельствует увеличение контактного угла смачивания на всех обработанных бактериальными культурами образцах цементного камня. По данным химического и морфологического анализа биоиндуцированных новообразований на поверхности образцов, а также результатам оценки изменения контактного угла смачивания по сравнению с исходным показателем для цементного камня, бактериальные культуры проранжированы в порядке повышения эффективности использования для осаждения карбоната кальция при их участии, а также повышения гидрофобности цементных материалов в следующей последовательности: S. pasteurii ® B. megaterium ® L. sphaericus ® B. pumilus.

Источник финансирования. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-29-12011 с использованием оборудования Центра Высоких Технологий БГТУ им. В.Г. Шухова.

Список литературы

1. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66-72. DOI:https://doi.org/10.31659/0585-430X-2019-772-7-66-72.

2. Dhami N.K, Reddy M.S., Mukherjee A. Biomineralization of calcium carbonates and their engineered applications: a review // Frontiers in Microbiology. 2013. No. 4. Р. 314. DOI.org/10.3389/fmicb.2013.00314

3. Seifan M., Berenjian A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world // Applied Microbiology and Biotechnology. 2019. Vol. 103. No. 12. Рр. 4693-4708. DOIhttps://doi.org/10.1007/s00253-019-09861-5

4. Ivanov V., Chu J., Stabnikov V. Basics of construction microbial biotechnology // Biotechnologies and Biomimetics for Civil Engineering. 2015. Рp. 21-56. DOI.org/10.1007/978-3-319-09287-4_2

5. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: a review // Ecological Engineering. 2010. Vol. 36. Рp. 118-136. DOIhttps://doi.org/10.1016/j.ecoleng.2009.02.006

6. Сивков С.П., Логинова Т.В., Мымрина А.К. Биодобавки для сухих строительных смесей // Сухие строительные смеси. 2017. № 5. С. 15-18.

7. Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony // Sedimentary Geology. 1999. Vol. 26. Рp. 25-34. DOIhttps://doi.org/10.1016/S0037-0738(99)00029-9.

8. Rodriguez-Navarro C., Fadwa J., Schiro M., Ruiz-Agudo E., Gonzalez-Muñoz M.T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation // Applied and Environmental Microbiology. 2012. Vol. 78. Рp. 4017-4029. DOI: 10.1128/ AEM.07044-11.

9. Achal V., Mukerjee A., Reddy M.S. Biogenic treatment improves the durability and remediates the cracks of concrete structures // Construction and Building Materials. 2013. Vol. 48. Рp. 1-5. DOI:https://doi.org/10.1016/j.conbuildmat.2013.06.061.

10. Wang J.Y., Soens H., Verstraete W., De Belie N. Selfhealing concrete by use of microencapsulated bacterial spores // Cement and Concrete Research. 2014. Vol. 56. Рp. 139-152. DOIhttps://doi.org/10.1016/J.CEMCONRES.2013.11.009.

11. Wang J., Mignon А., Snoeck D., Wiktor V., Boon N., De Belie N. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing // Frontiers in Microbiology. 2015. Vol. 6. Р. 1088. DOI:https://doi.org/10.3389/fmicb.2015.01088.

12. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83-103. DOI:https://doi.org/10.31659/0585-430X-2019-774-9-83-103.

13. Духанина У.Н., Балицкий Д.А., Строкова В.В. Воздействие кислорода и ионов кальция на морфогенез бактерий рода Bacillus // Наука и инновации в XXI веке: актуальные вопросы, открытия и достижения Сборник статей XIII Международной научно-практической конференции в 2-х частях. 2019. С. 48-50.

14. Кожухова М.И., Фомина Е.В., Фомин А.Е. Фракталы как иерархический принцип организации в строительном материаловедении // Вестник БГТУ им. В.Г. Шухова. 2018. №. 7. С. 18-23. DOI:https://doi.org/10.12737/article_5b4f02b20be876.03657115.

15. Кожухова М.И., Строкова В.В., Соболев К.Г. Особенности гидрофобизации мелкозернистых поверхностей // Вестник БГТУим. В.Г. Шухова. 2014. № 4. С. 33-35.


Войти или Создать
* Забыли пароль?