Belgorod, Belgorod, Russian Federation
VAC 05.17.00 Химическая технология
VAC 05.23.00 Строительство и архитектура
UDK 66 Химическая технология. Химическая промышленность. Родственные отрасли
By using the ratio of the mass of grinding media to the mass of the grinding material in the laboratory it was studied the processes of grinding material in a ball mill. It was found the possibility of an intensification of the milling process as a result of the most dense ball load, which provides a high-energy grinding of the material due to the presence of two factors: the impulse of abrasion action (IAA) and impulse of impact compression (IIC). In pilot tests it was achieved increasing the productivity of ball mill by 15–20 %.
dense loading, impulse of abrasion action, impulse of impact compression
Предпринят новых подход к исследованию измельчения в шаровых трубных мельницах [1–10], в основу которого положено применение не энергетических показателей процесса, как это общепринято в научно-технической литературе, а отношение масс взаимодействующих ингредиентов-мелющих тел и размалываемого материала. Отношение их масс позволило выделить фактор, величина которого оказывает существенное влияние на процесс помола. Этим фактором оказался объем размалываемого материала, численное значение которого находится в знаменателе, из чего следует, что для увеличения воздействия мелющих тел на размалываемый материал необходимо уменьшить знаменатель рассматриваемого отношения, что возможно только уменьшая объем размалываемого материала, находящегося в пустотах между шарами, т.е. увеличивая плотность укладки шаров. Так возникла идея применения максимально плотной шаровой загрузки для интенсификации процесса помола.
Предложен механизм воздействия совокупности шаров мелющей загрузки на размалываемый материал в виде импульса ударного сжатия (ИУС) [7], возникающего в момент их максимального контакта в нижней точке соприкосновения шаров с цилиндрической поверхностью барабана мельницы. В расчете на 1 м3 шароматериальной загрузки рассматриваемое соотношение имеет следующий вид:
где mм.т – масса мелющих тел, т/ м3; mорм. – масса одновременно размалываемого материала, т/м3; γм.т. – плотность мелющих тел, т/м3; ρорм. – насыпная масса размалываемого материала, т/м3; Vм.т., Vорм. – доля общего объема загрузки, занимаемая мелющими телами и размалываемым материалом соответственно.
Применительно к 1 м3 шаровой загрузки 1-ой камеры мельницы:
При плотной упаковке шаров пустоты между ними составляют 26% общего объема, шары соответственно занимают 74% шароматериальной загрузки. Отношение массы шаров к массе материала:
Данное соотношение показывает, что размалывающее действие практически в два раза больше, чем при обычной загрузке.
Размер пустоты между шарами характеризуется диаметром вписанного в неё шара. Виды возможных плотных шаров, размеры пустот и вписанных в них шаров приведены табл. 1.
Не все приведенные в таблице мелкие шары могут быть использованы в качестве вписанных в пустоты между основными (крупными) шарами. Шары диаметром 10–15 мм могут пройти в отверстия межкамерных и выгрузочных диафрагм. Если размеры основного и вписанного шара различаются в 10 раз и более, то подвергаются самосортировке в мельнице, которая в данном случае является своеобразным ситом, на котором всегда разделяются мелкие и крупные фракции материала. Для формирования устойчивой плотной укладки оптимальной является пара шаров (основной и вписанный), отношение масс которых должно находиться в интервале 1,5–3,5. Указанному условию соответствуют пары шаров с заполнением кубической пустоты, d0/dв: 100/70, 80/60, 70/50, 40/30, 30/20, 25/17. Для формирования мелющей загрузки двухкамерной мельницы достаточно взять четыре размера шаров (две пары), вместо 10 размеров шаров в традиционной загрузке.
Таблица 1
Двухшаровые плотные упаковки
Виды шаров |
Варианты пар шаров плотной упаковки |
||||
1 |
2 |
3 |
4 |
5 |
|
Диаметр основного шара (d0), мм |
100 |
80 |
70 |
50 |
40 |
Диаметр вписанного в пустоту шара dв, мм |
701; 402; 203 |
601; 332 |
501; 302 |
401; 202 |
301; 172 |
1 – кубическая пустота (образуется восьмью соседними шарами);
2 – октаэдрическая пустота (образуется шестью соседними шарами);
3 – тетраэдрическая пустота (образуется четырьмя соседними шарами).
Расчеты показывают, что производительность мельницы с плотной шаровой загрузкой выше на 60-70%, чем на традиционной загрузке. Однако лабораторные испытания на двухкамерной мельнице Гипроцемента и кратковременные опытно-промышленные испытания, показали повышение производительности мельницы в пределах 20-30%. Основная причина заключается в сортировке шаров по размерам в процессе их взаимодействия с бронефутеровкой мельницы. При этом часть крупных шаров концентрируется около межкамерной и выгрузочной диафрагм, что частично разрушает плотность шаровой загрузки. Для сохранения устойчивой шаровой загрузки нами предложена специальная бронефутеровка, содержащая желоба, направленные вдоль окружности барабана мельницы, и спиральные канавки. Желоба препятствуют передвижению и классификации шаров вдоль оси мельницы, а спиральные канавки предназначены для ускорения движения размалываемого материала и достижения его оптимального количества, чтобы сохранить заданную величину ИУСа и обеспечить высокую степень измельчения материала и повышенную производительность мельницы.
Отличительная особенность энергии мелющей шаровой загрузки состоит в том, что она диссипирована (распределена, раздроблена) на микроскопические доли энергии отдельных шаров, которые корректнее рассматривать на примере одного шара: ударное действие шара в водопадном режиме описывается выражением ИУС=m·g·τ, где m - масса шара, кг; g – ускорение силы тяжести, м/с2, τ – время падения шара, с.
где h – высота падения шара, м.
ИУС = 1,41·9,81·0,5 = 6,9 кг·м/с.
Детальный анализ показал, что в водопадном режиме движения шаров имеет место еще один механизм действия шаров на размалываемый материал, представляющий собой импульс истирающего действия (ИИД), количественно равный кинетической энергии шара в верхней точке отрыва от поверхности барабана. О наличии такой энергии свидетельствует последующая траектория движения шара по параболе, в отсутствии такой энергии шар падает вниз по вертикальной линии (доказано экспериментально на лабораторной мельнице). Количественно энергия шара диаметром 70 мм равна: ИИД = m·V, где m – масса шара, кг; V – скорость отрыва шара от поверхности барабана, м/с, равная линейной скорости движения окружности барабана, контактирующей с шаровой загрузкой на подъемном участке траектории:
где R – радиус мельницы, м; ν – частота вращения мельницы, мин-1.
ИИД = 1,41 · 2,43 = 3,4 кг·м/с.
Таким образом, шар в водопадном режиме оказывает двойное действие на размалываемый материал, а именно, истирание материала в верхней точке отрыва от поверхности барабана и ударное сжатие материала при контакте с поверхностью в нижней точке барабана. Суммарное действие шара массой 1,41 кг за один цикл (подъем-падение) составляет:
ИУС + ИИД = 6,9 + 3,4 = 10,3 кг·м/c.
Полученные результаты подтверждают высокую эффективность процесса грубого помола клинкера в первой камере мельницы, имеющего кратность измельчения, равную ~ 50 (с 15 мм до 0,3 мм) и в том числе 20–30 % готового цемента конечной тонкости помола (< 80 мкм).
Совсем другая ситуация имеет место во второй камере тонкого помола материала, оснащенной гладкой бронефутеровкой. В движении мелких шаров из-за их недостаточной высоты подъема отсутствует четко выраженные импульсы ударного сжатия и истирающего действия. Основная масса мелких шаров (d=20-30 мм) совершает медленное поступательно-вращательное движение с полным перемешиванием материала за один оборот барабана мельницы. Так как общее количество шаров во второй камере мельницы на порядок больше, чем в первой камере, то переданная им энергия диссипирована до такой степени, что единичный шар не в состоянии совершить необходимый истирающий акт воздействия над материалом. Таким образом, почти вся совокупность энергии мелких шаров превращается в теплоту, а процесс измельчения материала прекращается, наглядным примером которого является диаграмма помола на рис. 1, на которой удельная поверхность и остаток на сите 008 представлены ровными линиями параллельными оси абсцисс. Очевидно, что следует и во второй камере создать действенный энергетический потенциал шарово-материальной загрузки по аналогии с первой камерой.
Рис. 1. Диаграмма помола
Основные результаты и выводы.
- Предпринят новый подход к исследованию процесса измельчения материала в трубных мельницах, в основу которого положено применение не энергетических показателей процесса, как это общепринято в научно-технической литературе, а отношения масс взаимодействующих ингредиентов – мелющих тел и размалываемого материала.
- Предложен механизм воздействия совокупности шаров мелющей загрузки на размалываемый материал в водопадном режиме в виде двух импульсов:
– импульса истирающего действия (ИИД), количественно равного кинетической энергии шаров в верхней точке отрыва от поверхности барабана;
- импульса ударного сжатия (ИУСа), возникающего в момент максимального контакта в нижней точке соприкосновения шаров с цилиндрической поверхностью барабана мельницы, равного отношению масс mмт/mрм.
3. Предложен способ повышения удельной энергии импульсов истирающего действия и ударного сжатия – применением плотной упаковки шаров в мелющей загрузке; плотная упаковка шаров концентрирует удельную массу мелющих тел в единице объема размалываемого материала и усиливает ИУС в 2 раза.
4. Для сохранения высокой энергии ИИД и ИУСа одновременно с быстрым измельчением необходимо увеличить скорость продвижения размалываемого материала по длине мельницы и его выгрузку, для чего следует и во второй камере тонкого измельчения организовать водопадный режим движения шаров с применением лифтерно-желобчатых бронеплит со спиральными дорожками, направленными по образующим барабана мельницы.
1. Andreev S.E., Tovarov V.V., Perov V.A., Zakonomernosti izmel'cheniya i ischisleniya harakteristiki granulometricheskogo sostava. M.: Metallurgizdat, 1959. 437 c.
2. Bazhanova O.I., Bogdanov V.S., Shaptala V.G. Modelirovanie temperaturo-vlazhnostnogo rezhima cementnoy mel'nicy // Vestnik BGTU im. V.G. Shuhova. 2012. №4. S. 91-95.
3. Sevost'yanov V.S., Mihaylichenko S.A., Il'ina T.N., Markidin A.A., Sivachenko T.L. Sposoby sovershenstvovaniya izmel'chiteley udarnogo deystviya na osnove mnogosterzhnevyh rabochih organov // Vestnik BGTU im. V.G. Shuhova. 2013. №4. S. 87-90.
4. Kryhtin G.S., Kuznecov L.N. Intensifikaciya raboty mel'nic. Novosibirsk: VO «Nauka», 1993. 240 s.
5. Pirockiy V.Z. Cementnye mel'nicy: tehnologicheskaya optimizaciya. S.-Pb.: Izd-vo Centra professional'nogo obnovleniya, 1999. 145 s.
6. Deshko Yu.I., Kreymer M.B., Kryhtin P.S. Izmel'chenie materialov v cementnoy promyshlennosti. M.: Izd-vo literatury po stroitel'stvu, 1966. 270 s.
7. Kapalnec E.G. Vzaimosvyaz' raboty melyuschih tel i futerovochnyh plit sharovyh mel'nic // Cement i ego primenenie. 2010. № 3. S. 80-81.
8. Pat. № 2477659 Rossiyskaya Federaciya, MKP B 02 C 17/20 Sharovaya zagruzka barabannoy mel'nicy / V.D. Barbanyagre; zayavitel' i pravoobladatel' BGTU im. V.G. Shuhova. - № 2010121271, zayavl. 25.05.10; opubl. 20.03.13.
9. Hodakov G.S. Tonkoe izmel'chenie stroitel'nyh materialov. M.: Stroyizdat, 1972. 240 s.
10. Barbanyagre V.D., Smal' D.V. Plotneyshaya sharovaya zagruzka trubnoy mel'nicy i ee effektivnost' // InformCement. 2011. № 2(32). S. 49-56.