с 01.01.2016 по 01.01.2019
тамбовский государственный технический университет
тамбов, Тамбовская область, Россия
Тамбов, Россия
Россия
Тамбов, Россия
Россия
УДК 69 Строительство. Строительные материалы. Строительно-монтажные работы
ГРНТИ 67.15 Технология производства строительных материалов и изделий
ОКСО 08.04.01 Строительство
BISAC ARC024000 Buildings / General
В целях ускорения темпов возведения зданий и сооружений в строительной практике широкое применение получили сборные железобетонные конструкции, соединяемые при монтаже посредством закладных стержневых элементов, замоноличиваемых впоследствии бетоном. Под воздействием внешних нагрузок в таких узловых соединениях возникают осевые растягивающие и поперечные сдвигающие усилия, которыми часто пренебрегают при статическом анализе конструкций. В свою очередь это может привести к развитию предельных деформаций в узле, изменению условий закрепления конструкции и, как следствие, преждевременному их обрушению. В данной статье рассматривается вопрос о влиянии осевого выдергивающего усилия в арматурном стержне на напряженно-деформированное состояние (НДС) окружающего его бетонного массива. Для решения поставленной задачи в работе проводился численный эксперимент в пакете ANSYS 19.0 Workbench, в котором моделировалось сцепление стеклопластиковой и стальной арматуры с бетонном, что позволило установить характер распределения напряжений в области заделки стержня
композитная арматура, узловые соединения, деформации, НДС, численное моделирование
Введение. Критический обзор литературы показал, что на данный момент актуальной проблемой в области армирования бетонных конструкций является недостаточная изученность НДС и характера смещения арматурного стержня относительно бетона, которые определяют совместную работу материалов в узловых соединениях.
Исследованиями в данной области занимались М.М. Холмянский и В.И. Мурашев. В своих работах [1, 2] они выделили основные виды «жестких» стыков, которые осуществлялись с помощью выпуска арматурных стержней, впоследствии замоноличенных на месте монтажа. Автор отмечает, что «одной из причин преждевременного разрушения сооружений является недостаточная прочность строительных швов» [2].
Однако, разрушение стыков может происходить из-за неучитываемой при их конструировании податливости соединения вследствие поперечных и продольных деформаций стержневых выпусков в бетонных узлах от различного рода нагрузок. Поэтому стыки не следует рассматривать как абсолютно жесткое соединение. В целях обеспечения нормальной эксплуатации сборных конструкций в стыковых соединениях необходимо производить уточняющий расчет смещения и ослабления сечения от совместной работы различных элементов.
Изучение вопроса расчета и моделирования раскрытия стыковых соединений требует решения ряда весьма важных общих задач, связанных с работой арматуры в бетоне при продольном и поперечном приложении нагрузки, а также установки физических параметров, характеризующих взаимную работу бетона и стержня при различных способах приложения усилий.
При всех способах нагружения сборных конструкций стержневая арматура в стыках будет работать в основном от двух видов воздействий – поперечных и продольных, которые воспринимаются арматурой на ее торцах, что приводит к образованию в бетонном массиве в области заделки таких контактных усилий, как касательные напряжения сцепления τсц(x) и поперечный отпор p(x) [3].
Так, осевое усилие N0 приводит к продольным смещениям арматуры относительно бетона g0, а усилие Q0 вызывает поперечное смещение стержневой арматуры Δ0 в бетоне (рисунок 1).
Очевидно, что именно величины указанных смещений g0 и Δ0 являются граничными условиями для нормальной работы стыковых соединений в конструкциях. Для определения этих величин необходимо установить зависимости между g(x) и τсц(x) (рисунок 1а) и между поперечными перемещениями Δ(x) и отпором p(x) (рисунок 1б).
Решение данной задачи возможно двумя способами. К первому относятся эмпирические исследования элементов конструкций, которые являются довольно продолжительными, дорогостоящими и трудоемкими, и не позволяют установить точный характер разрушения и распределения напряжений в области заделки. Вторым способом является аналитическое моделирование процесса сцепления арматуры с бетоном, которое менее затратное с точки зрения материальных вложений и времени. В данной работе моделирование сцепления арматурного стрежня с бетоном проводилось в пакете ANSYS 19.0 Workbench.
а) |
б) |
а) продольное нагружение; б) поперечное нагружение
Методика проведения эксперимента. Перед проведением численного эксперимента были выполнены испытания на вырыв стеклопластиковой (СПА) и стальной арматуры с диаметром (d) 10 мм из бетонных кубов с ребром 100 мм, набиравших прочность в нормальных условиях (90 сут., t=20±2 °C, w=65 %). Данное испытание выполнялось согласно ГОСТ 31938-2012. При этом были приняты класс бетона В25 и длина заглубления арматурного стержня в бетон (l), задаваемая по отношению l/d=5. Перемещение стержня относительно бетона фиксировалось индикатором часового типа с точностью до 0,001 мм, установленным на нагруженном конце стержня (рисунок 2).
Для построения численной модели в пакете ANSYS 19.0 Workbench задавались механические характеристики бетона и арматуры согласно ГОСТ 31938-2012, ГОСТ 24452-80 и ГОСТ 12004-81, которые приведены в статье [4]. Так модуль упругости для СПА составлял 58 000 МПа, а для стальной арматуры 201 000 МПа. Предел прочности на разрыв у СПА принят
1190 МПа, а у стальной арматуры – 610 МПа
Рис. 2. Схема образца и установка для испытания на выдергивание
Модель. С помощью современного аппарата механики деформируемого твёрдого тела стало возможным решить поставленную задачу с учетом нелинейности работы материала на основе методов конечных элементов (МКЭ). На данный момент МКЭ получил широкое применение в инженерной практике, чему способствовали разработка и совершенствование таких программных комплексов, как ANSYS [5], MARC, ABAQUS и др.
В качестве модели бетона принята модель Menetrey-Willam [6–8], основанная на поверхности пластичности Willam-Warnke и зависящая от трех инвариантов тензора напряжений.
Поверхность пластичности Willam-Warnke отличается от поверхности Мора-Кулона тем, что она не имеет острых краев, которые могли бы вызвать некоторые трудности в решении поставленной задачи.
Для описания в ANSYS работы стеклопластикового стержня были использованы закон Гука и модель для ортотропного материала Orthotropic Elasticity (рисунок 3). При этом матрица жесткости будет существовать, поскольку в плоскости СПА располагается вторая плоскость симметрии.
Рис. 3. Расчетная конечноэлементная модель
Для описания в ANSYS работы стеклопластикового стержня были использованы закон Гука и модель для ортотропного материала Orthotropic Elasticity (рис. 3). При этом матрица жесткости будет существовать, поскольку в плоскости СПА располагается вторая плоскость симметрии.
Как было установлено ранее в статье [4], первостепенной причиной разрушения сцепления СПА с бетоном является отслоение периодического профиля от основного стержня. Для моделирования данного процесса применялась модель связанной зоны Cohesive zone model (CZM), в которой разрушение матрицы связующего рассматривается как постепенное отделение поверхности профиля арматуры от основного стержня с последующим его расслоением [9].
Для описания работы стальной арматуры принималась билинейная изотропная модель, поверхность текучести которой расширяется равномерно по всем направлениям в случае изотропного упрочнения материала. Начальный наклон кривой (σ-ε) эквивалентен модулю упругости материала. За пределом текучести стали наблюдается рост пластических деформаций [10–15]. Для описания этой зависимости вводится понятие «модуль касательной», который не может быть меньше нуля или больше модуля упругости. В качестве критерия разрушения стальной арматурой выступает достижение эквивалентным напряжением по Mises, величины 610 МПа.
Анализ НДС в бетонном массиве. На основе полученных эмпирических данных была построена модель сцепления арматуры с бетоном. Впоследствии рассматривалось НДС в бетонном массиве, определенное из численного эксперимента при нагрузке 0,5 от разрушающей, так как при больших значениях нагрузки начинается лавинообразный рост деформаций, что в условиях эксплуатации недопустимо [15–18].
Результаты анализа взаимных смещений арматуры и бетона приведены на рис. 4 и 5.
а) б)
Рис. 4. Модель перемещения арматуры в бетонном массиве: а) стальной; б) СПА
Показаны 3 плоскости для анализа: АВ – по центру арматурного стержня; CD – по поверхности основного стержня; EF- по краю профиля арматуры. Зависимости для плоскости АВ принимают экспоненциальную форму для обеих арматур, однако, величина смещения имеет разные значения. Так, для СПА величина смещения верхнего значения примерно в 1,5 раза выше нижнего значения. Это объясняется более высоким модулем упругости и однородной структурой у стальной арматуры.
Для плоскостей CD и EF зависимости также принимают экспоненциальную форму, однако наблюдаются скачки величины перемещений, которые совпадают с расположением профилей на стержне. Такое поведение кривых обусловлено тем, что арматура имеет более высокие деформационные характеристики по сравнению с бетоном и, как следствие, в арматуре развиваются деформации, большие чем в бетоне. Стоит отметить, что у СПА скачки величины перемещений выражены в меньшей степени, чем у стальной арматуры, поскольку СПА имеет сравнительно низкий модуль упругости и по структуре является ортотропным материалом.
а) б)
Рис. 5. Зависимость величины взаимного смещения стержня
(а – стального; б – СПА) и бетона от глубины его заделки для различных плоскостей в образцах
В итоге, наблюдается совместное деформирование арматуры и бетона при отсутствии взаимных смещений, а также возникновение касательных напряжений в зоне контакта вследствие различных значений упругих постоянных Е и ν.
Следует отметить, что величина сцепления и, как следствие, НДС в области заделки определяются рядом факторов, приведённых на рис. 7.
Рис. 7. Напряжения в параллельных волокнах основного стержня СПА
Основополагающим из них является механическое зацепление периодического профиля стержня за бетонные консоли, расположенные между профилями арматуры. Как изображено на рис. 8а, консоли с обеих сторон одновременно воспринимают распределение сжимающих усилий, возникающих от передачи нагрузки профилем арматуры. Также для выполнения условия равновесия на верхней грани образуются растягивающие усилия [19–23].
а) б)
Рис. 8. Распределение нормальных напряжений вдоль оси Y в бетонном массиве у образцов:
a) стальной арматуры; б) СПА
Из-за меньшей жесткости профиля СПА консоли бетона полностью работают на сжатие, а, так как профиль имеет резьбу под углом 30 градусов, сжимающая площадка для равновесия образуется под тем же углом между витками профиля (рис. 8, б). Весь остальной массив работает на продольные растягивающие усилия вдоль оси Y.
Следует так же отметить, что классическое понятие инженерной прочности бетона для решения контактной задачи использовать некорректно, поэтому для решения поставленной задачи требуется применять прочностные характеристики бетона при размере образца 0,1 ÷ 1 мм.
С увеличением размеров образцов вероятность микродефекта в структуре материала увеличивается, а с уменьшением размеров образцов прочность бетона, как правило, возрастает. В данном случае это подтверждается тем, что максимальные сжимающие усилия, образуемые под консолями, достигают 100 МПа. Работа бетона при таком уровне напряжений вполне объясняется локальным характером их возникновения, поддерживающим влиянием ненагруженного бетона вне консольных областей, процессом, известным как «местное смятие бетона», прочность при котором много выше призменной.
Поэтому применять максимальные прочностные характеристики бетона для анализа несущей способности сцепления можно с определёнными приближениями. Для более глубокого отражения работы бетона и механизма разрушения следует учесть интенсивность напряжений и пластические деформации бетона (рис. 9 и 10).
а) б)
Рис. 9. Максимальные пластические деформации в бетонном массиве у образцов:
a) стальной арматуры; б) СПА
а) б)
Рис. 10. Интенсивность напряжений в бетонном массиве у образцов:
a) стальной арматуры; б) СПА
Изучение законов пластических деформаций намного сложнее, чем упругих, особенно в области контакта арматуры с бетоном при решении задачи сцепления. В этом случае все зависимости, описывающие такие деформации, нелинейны и аналитически трудно описываемы. Это связано со следующими обстоятельствами: возникновением анизотропии при больших пластических деформациях; невозможностью рассматривать процесс приложения нагрузки как простое нагружение, при котором все силы изменяются пропорционально одному монотонно возрастающему параметру.
При комплексном рассмотрении ряда параметров наблюдается, что зоны пластических деформаций образуются в местах, где впоследствии происходит прорастание трещин. Например, для образцов с стальной арматурой трещины образуются в областях среза бетонных консолей (рис. 9, а). В тоже время для СПА ярко выражено трещинообразование только вдоль стержня арматуры в плоскостях сжимающих напряжений (рис. 9, б). Таким образом, из вышеизложенного можно сделать вывод, что податливость заделки во многом зависит от мест образования и развития пластических деформаций в бетоне.
Однако, при сопоставлении эпюр распределения нормальных напряжений и зон пластических деформаций с эквивалентными напряжениями (рис. 11) наблюдается, что влияние нормальных напряжений вторично.
а) б)
Рис. 11. Эквивалентные напряжения в бетонном массиве у образцов:
a) стальной арматуры; б) СПА
Это подтверждается образованием в экспериментальных образцах вследствие внутризернового сдвига главных и кольцевых трещин, на основании которых происходит разрушение сцепления арматуры с бетоном. Появление сдвига при относительно малых нормальных сжимающих усилиях свидетельствует о неоднородности бетона в контактной зоне и огромной роли касательных напряжений.
Поперечное расположение ребер стержневой арматуры периодического профиля способствует увеличению сопротивления проскальзыванию стержня относительно бетона. Это показывают основные составляющие интенсивности напряжения, к которым относятся касательные напряжения в плоскости XY, затухающие по мере заглубления стрежня (рис. 12). Однако, из-за более высоких деформационных характеристик арматуры в области контакта образуются скачки напряжения (рис. 13), которые и приводят к образованию трещин в растянутой зоне армированных бетонных конструкций.
а) б)
Рис. 12. Распределение касательных напряжений по плоскости XY в бетонном массиве у образцов:
- стальной арматуры; б) СПА
а) б)
Рис. 13. Распределение касательных напряжений в расчетных плоскостях у образцов:
a) с стальной арматурой; б) с СПА
Выводы. Разработанная на базе комплекса ANSYS 19.0 WorkBench модель сцепления арматуры с бетоном позволила изучить напряженно-деформированное состояние бетонного массива при выдергивании арматуры с учетом её фактического периодического профиля. Проведенный численный эксперимент показал, что на НДС бетона в области заделки и на характер его разрушения оказывает влияние ряд таких факторов, как структура, строение и механические характеристики арматуры.
При рассмотрении НДС для работы стальной арматуры можно выделить два главных фактора её взаимодействия с бетоном в узловых соединениях конструкций. Во-первых, стержень вкручивается в бетон у свободного торца элемента за счет касательных напряжений; во-вторых, приложенная к арматуре внешняя нагрузка исключает ее поворот без разрушения бетона.
У СПА таких процессов не происходит по причине ее более низких деформационных характеристик.
Таким образом, получается, что ведущую роль для обеспечения надежной работы замоноличенного стыка в случае стальной арматуры играет зацепление винтовых выступов её поверхности за бетон, а в случае СПА - силы трения, создающие сцепление. При этом потеря несущей способности заанкеренной арматуры в первом случае происходит при напряжениях 110 МПа в бетоне и 410 МПа в стержне. Для СПА значения предельных напряжений меньше и достигают величин 70 МПа в бетоне и 312 МПа в стержне.
1. Холмянский М.М. Контакт арматуры с бетоном. М.: Стройиздат, 1981. C. 184.
2. Мурашев В.И. Трещиноустойчивость, жесткость и прочность железобетона. М.: Стройиздат,1950. C. 268.
3. Тевелев Ю.А., Дмитриев А.Н. Железобетонные конструкции в водохозяйственном строительстве: проектирование и изготовление // Росинформагротех. 2006. С. 21
4. Николюкин А.Н., Ярцев В.П., Коломникова И.И., Альджабуби Д.З. Экспериментальные исследования прочности сцепления стеклопластиковой арматуры с цементно-песчаным бетоном// Транспортные сооружения. 2019. №1. DOI:https://doi.org/10.15862/02SATS119
5. ANSYS Mechanical APDL theory reference. Release 19.0. Canonsburg, Pennsylvania, USA, 2018. Pp. 952.
6. Drucker D.C., Prager W. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics. 1952. Vol. 10. № 2. Pp. 157-165.
7. Menet rey P. Numerical Analysis of Punching Failure in Reinforced Concrete Structures. Diss. Ecole Polytechnique Federale de Lausanne, Lausanne, 1994. Pp. 12.
8. Willam K.J., Warnke E.P. Constitutive Models for the Triaxial Behavior of Concrete. Seminar on Concrete Structures Subjected to Triaxial Stresses. International Association for Bridge and Structural Engineering. 1975. Vol. 19. Pp. 1-30.
9. Кашеварова Г.Г., Мартиросян А.С., Травуш В.И. Расчетно-экспериментальное исследование процесса разрушения связей сцепления при вдавливании стержня жесткой арматуры в бетон // Вестник Пермского национального исследовательского политехнического университета. Механика. 2016. № 3.С.62-75.
10. Гиздатуллин А.Р. Совместная работа полимеркомпозитной арматуры с цементным бетоном в конструкциях: дисс.канд. техн. наук. Т.: Казань, 2018. C. 190.
11. Бенин А.В. Математическое моделирование процесса разрушения сцепления арматуры с бетоном.Ч.1. Модели с учетом несплошности соединения // Инженерно-строительный журнал. 2013. № 5. C. 86-144.
12. Римшин В.И., Меркулов С.И. Элементы теории развития бетонных конструкций с неметаллической композитной арматурой // Промышленное и гражданское строительство. 2015. № 5. С. 38-42.
13. Римшин И.В., Кустикова Ю.О. Феноменологические исследования величины сцепления базальтопластиковой арматуры с бетоном // Известия ЮЗГУ. Серия Техника и технологии. 2011. № 1. С. 27-31.
14. Кудяков К.Л. Прочность и трещиностойкость изгибаемых бетонных элементов с базальтофибровым и стержневым стеклокомпозитным армированием при статическом и кратковременном динамическом нагружении: Дисс.канд. техн. наук. Т.: ТГАСУ. 2018. С. 208.
15. Коковцева А.В., Семенов С.Г. Моделирование процесса выдергивания стеклопластиковой арматуры из бетонного блока // Сборник трудов конференции c международным участием «XIII неделя науки СПБГПУ». 2013. С. 182-184.
16. Гутников С.И., Лазоряк Б.И. Стеклянные волокна: учебное пособие. М.: МГУ им. М.В. Ломоносова, 2010. 53 с.
17. Yalcıner H., Eren O., Serhan S. An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level // Cem Concr. 2012. Nol 14. Pp. 643-655.
18. Николюкин А.Н., Ярцев В.П.Численное моделирование композитной арматуры для задачи сцепления с бетоном // Вестник БГТУ им. В.Г. Шухова. 2019. № 5. С. 56-65.
19. Nikolyukin A.N., Yartsev V.P.Modeling the coupling of reinforcement in concrete based on an artificial neural network // Russian Journal of Building Construction and Architecture. 2019. № 3 (43). С. 6-16.
20. Yartsev V. Giyasov B., Nikolyukin A., Abdul Barei Danish, Giyasova I., Aljaboobi D. The impact of high-rise buildings on the living environment // E3S Web of Conferences. High-Rise Construction. 2019. С. 10-16.
21. Mermerdas K., Guneyisi E., Gesoglu M., Ozturan T. Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes. Constr Build Mater. No. 43. 2013. Pp. 337-347.
22. Duan Zh., Kou S.C., Poon C.S. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks // Constr Build Mater 2013. No. 40. Pp. 1200-1206.
23. Adhikary B.B., Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater. 2006. No. 20(9). Pp. 801-811.