Иваново, Ивановская область, Россия
Ивановская область, Россия
ГРНТИ 61.31 Технология неорганических веществ и продуктов
ББК 35 Химическая технология. Химические производства
Эффективными модификаторами структуры и свойств бетонной смеси являются химические добавки, в первую очередь, пластификаторы и суперпластификаторы. В ходе работы изучено влияние введения суперпластификатора «Полипласт СП–2ВУ» в бетонную смесь, что позволяет модифицировать строительно-технологические показатели бетона. Анализ данных, полученных при определении скорости схватывания системы на основе цемента и различных концентраций регулятора, показал, что введение СП–2ВУ в цементный раствор приводит к существенному замедлению процесса схватывания вяжущей композиции по сравнению с без-добавочным цементом, отодвигая его начало схватывания с ~ 2 ч до ~ 12,5 ч. Вместе с тем также наблюдается постепенное замедление продолжительности схватывания системы в ~ 2 раза по сравнению с обычным бетоном. В присутствии СП–2ВУ (до концентрации 0,7 %) повышается прочность модифицированных бетонов по сравнению с обычным. Кроме того, установлена оптимальная концентрация добавки (0,5 %), способствующая набору необходимой скорости структурообразования системы, формированию плотного и прочного конгломерата с более упорядоченной и стабильной затвердевшей структурой, и определенными эксплуатационными характеристиками. При этом прочность образцов с содержанием 0,5 % модификатора в бетонной смеси повышается на 40 %.
суперпластификаторы, добавка СП-2ВУ, цементные растворы, добавки в бетоны, модифици-рование бетонов, технология бетона, свойства бетонов
Введение. В качестве основного строительного материала в третьем тысячелетии широкое применение находит модифицированный бетон. В таком искусственном композите в качестве регуляторов его свойств выступают различные химические добавки. Их введение в состав оказывается достаточно простым и легким решением в прогнозировании свойств бетона и повышении качества выпускаемой продукции. Правильный подбор модификаторов может приводить к некоторой экономии на производстве изделий [1–7].
Сегодня таким технологическим приемом пользуются на всех технологиях производства. Они способствуют появлению и развитию новых технологий, таких как производство высокопрочных, самоуплотняющихся бетонов и т.п. Более того, химические добавки позволяют значительно уменьшить количество расходов на выпуск одного изделия, улучшить его качественные характеристики и рентабельность некоторого ассортимента железобетонных конструкций, повысить их долговечность. Концентрация модификаторов в бетонном композите достаточно мало – это всего десятые доли процента от массового содержания портландцемента в смеси и все же этого достаточно для регулирования в различных направлениях свойств и скорости затвердевания бетона, меняя его некоторые эксплуатационно-технические характеристики [8–13].
Вместе с тем, необходимость подбора класса и концентрации добавок зависит от многих факторов. Одним из таких является, например, вид химического реагента в составе модификатора, который и задает характер влияния на свойства бетонной смеси и бетона: ускоряя или замедляя скорость схватывания системы, изменяя прочностные и др. характеристики готовых изделий. Так, ранее [14] нами изучено воздействие универсального регулятора БЕСТ на эксплуатационно-технические показатели бетонного композита с помощью регулирования процесса схватывания системы, а также изменение пределов прочности на сжатие бетона в различные сроки твердения. Анализ данных показал, что концентрация 0,3 % регулятора в бетонной смеси способствует ее продолжительному периоду схватывания (до 4 ч) благодаря образованию адсорбционного слоя добавки на поверхности зерен цемента, непроницаемого для воды. С повышением содержания (0,5–1,0 %) БЕСТ в системе установлено ускорение скорости схватывания вяжущей системы благодаря дефлокулирующему действию модификатора. Нами выявлено повышение прочностных показателей модифицированного бетона (на 41 %) относительно без добавочного. Более того, ввод универсальной добавки БЕСТ позволяет регулировать морозостойкость конечного композита в ~2 раза возможно за счет ускоренного формирования гелей гидроксидов кальция.
В настоящей работе представлены результаты изучения поведения бетонных композиций, включающих суперпластификатор «ПОЛИПЛАСТ СП-2ВУ» с водоудерживающим эффектом с разной массовой концентрацией в теле затвердевшего цементного раствора (0,1–0,9 %). Количественным показателем выбраны сроки схватывания бетонной смеси и предел прочности на сжатие бетонной композиции в результате гидротермальной обработки образцов.
Методология. Вяжущим компонентом в бетонной системе является портландцемент марки ЦЕМ I 42,5Б ОАО «Мордовцемент», отвечающий требованиям ГОСТ 31108–2003. Цементы общестроительные. Технические условия. Химический состав его клинкера (массовое содержание, %): CaO – 60,38; SiO2 – 23,37; Al2O3 – 4,98; Fe2O3 – 4,03; SO3 – 2,83; MgO – 1,13; K2O – 1,08; Na2O – 0,396; TiO2 – 0,234; P2O5 – 0,227; SrO – 0,129; MnO – 0,046; ZnO – 0,027; Cr2O3 – 0,011. Минералогический состав его клинкера (массовое содержание, %): 3CaO·SiO2 (C3S) – 61,56; β-2CaO·SiO2 – (β-C2S) – 16,07; 3CaO·Al2O3 (C3A) – 6,20; 4CaO·Al2O3·Fe2O3 (C4AF) – 12,68.
В качестве мелкого заполнителя применяли обогащенный кварцевый песок Хромцовского месторождения с модулем крупности 2,4, соответствующий ГОСТ 8736–2014. Песок для строительных работ. Технические условия. Крупным заполнителем является гранитный щебень Орского месторождения фракции 5 – 20 мм с водопоглощением 0,2 %, отвечающий требованиям ГОСТ 8267–93. Щебень и гравий из плотных горных пород для строительных работ. Технические условия. В качестве регулятора использовали суперпластификатор со стабилизирующим эффектом «Полипласт СП–2ВУ» (СП–2ВУ), который выпускает ООО "Полипласт Новомосковск", г. Новомосковск в форме водного раствора коричневого цвета по ТУ 5745–015–58042865 –2006 Суперпластификатор «Полипласт СП–2ВУ». Технические условия.
Анализа инфракрасной спектроскопии (ИКС) материала осуществляли с помощью прибора – Avatar 360–FT–IP (фирмы «Nicolet») в области 500–4000 см -1.
Регулирование свойств цементных композиций в результате добавления к ним с разной концентрацией СП–2ВУ проводили на основе исследования сроков схватывания вяжущей системы на основе теста нормальной консистенции. Прочностные показатели бетона, твердевшего в течение 3-, 7- и 28 суток, изменяли по ГОСТ 310.3–76 Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема (с Изменением № 1). Изучение прочности модифицированного бетона осуществляли на бетонных смесях марки М300, составы которых представлены в табл. 1.
Таблица 1
Соотношение компонентов в бетонной смеси
Состав бетонной смеси |
Массовое содержание, % |
|||||
без добавки |
с добавкой |
|||||
Цемент |
13,83 |
12,79 |
12,83 |
12,84 |
12,89 |
12,93 |
Песок |
32,31 |
34,10 |
34,18 |
34,22 |
34,35 |
34,47 |
Гравий |
46,95 |
46,47 |
46,58 |
46,64 |
46,80 |
46,98 |
Вода |
6,91 |
6,64 |
6,41 |
6,30 |
5,96 |
5,62 |
Добавка СП–2ВУ |
– |
0,10 |
0,30 |
0,50 |
0,70 |
0,90 |
Ввод пластифицирующего агента СП–2ВУ осуществляли с помощью приготовления водного раствора с концентрацией 0,1–0,9 % СП–2ВУ, взятого от массы цемента. Регулятор вводится всегда сверх 100 % всех компонентов бетонной системы.
Твердение бетонных композиций осуществлялось в условиях тепловлажностной обработке (ТВО) образцов в пропарочной камере при температурах до 80 °С и давлении 0,3 МПа.
Основная часть. Модифицирующим эффектом в структурообразовании и прогнозировании свойств бетона обладают химические реагенты, особенно пластификаторы и суперпластификаторы. Последние оказывают влияние на поверхностные слои твердых частиц и микроструктурные механизмы схватывания и твердения бетонной системы, что дает возможность управлять некоторыми свойствами композиции и позволяет получать бетоны с улучшенными характеристиками. Данные реагенты на основе ПАВ изменяют в основном реологические свойства цементобетонных систем, приводя к существенному разжижающему эффекту, который не способствует снижению показателей по прочности затвердевшего конгломерата. Ярким представителем таких модификаторов может быть суперпластификатор «ПОЛИПЛАСТ СП-3», проведенные ранее исследования [15] с которым показали, что нахождение его в составе цементобетонной смеси позволяет регулировать технологические характеристики в разных направлениях. Так, содержание 0,5–1,0 % регулятора в составе композиции способствует замедлению процесса структурообразования системы благодаря пептизирующему влиянию СП–3. Нами также выявлена приемлемая концентрация модификатора, способствующая набору необходимой скорости схватывания бетонной смеси с последующим формированием прочного конгломерата с определенными эксплуатационными характеристиками. При концентрации 0,5 % регулятора СП–3 в бетонной смеси наблюдается прирост прочностных показателей на 22 %. В связи с этим, было интересно проанализировать влияние еще одного суперпластификатора «ПОЛИПЛАСТ СП-2ВУ» с водоудерживающим эффектом на строительно-технологические свойства бетонных композиций.
В ходе работы был сначала изучен химический состав суперпластификатора с помощью ИК–спектроскопии. Полученные ИК–спектры СП–2ВУ представлены на рис. 1. Так как добавка взята в виде водного раствора, для нее характерна очень широкая полоса в области 3100–3650 см-1, в которой поглощают ОН–группы, соединенные водородными связями. Присутствует также полоса ~1600 см-1, свойственная свободной воде. При 2927 см-1 поглощают метиленовые группы –СН2–СН2–. Умеренно интенсивные колебания метиленовых мостиков наблюдаются и в области 680-900 см-1. Заметные полосы соответствуют группам –С–ОН (1512, 1452 см-1), –С=О (перегиб при 1785 см-1), –С–О–С– (1188, 1038 см-1).
Рис. 1. ИК–спектр водного раствора Полипласт СП–2ВУ
При 2230 см-1 обнаруживается полоса, предположительно отвечающая колебаниям акрилонитрильной группы –С≡N, и компонент сложной полосы (1667 см-1) – для амидной группы. Можно также отметить полосы ~1300 и ~1100 см-1, свойственные валентным колебаниям сульфогруппы. Достоверность полученных данных подтверждается идентификацией основных пиков.
К пластическим свойствам, позволяющим изменять в достаточно широких пределах процессы структурообразования бетонной смеси и зависящим от многих параметров, относят сроки схватывания. Схватывание цементного теста – это момент, при котором относительно подвижная смесь цемента с водой постепенно густеет с потерями цементной пастой подвижности и приобретает такую начальную прочность, при которой ее дальнейшее механическое изменение (формование) становится практически затруднительным и даже невозможным (в конце схватывания). Поэтому нами проведены исследования процесса схватывания обычного цемента и с введением различных концентраций пластифицирующего реагента в смесь.
Так, проанализировав кинетику набора скорости схватывания различных композиций (табл. 2), получили, что в результате присутствия в цементном растворе СП–2ВУ наблюдается существенное замедление процесса структурообразования системы в отличии от без добавочного цемента. Концентрации 0,3 и 0,5 % реагента в цементном тесте позволяет замедлить процесс его схватывания на 9,5 ч, что является важным и очень удобным при транспортировании бетонной смеси на большие расстояния.
Увеличение содержания СП–2ВУ в бетонной смеси отодвигает начало ее схватывания до ~ 11,5 ч, что в последствии может повлечь организацию предварительного твердения и сказаться на увеличении времени гидротермальной обработки при пропаривании железобетонных изделий. Вместе с тем также наблюдается постепенное замедление продолжительности схватывания системы в ~2 раза по сравнению с обычным бетоном.
Таблица 2
Сроки схватывания бетонной смести, ч-мин
Концентрация добавки СП–2ВУ |
Начало схватывания |
Конец схватывания |
0 |
1–39 |
5–55 |
0,1 |
2–50 |
7–48 |
0,3 |
6–05 |
11–24 |
0,5 |
9–30 |
17–11 |
0,7 |
10–28 |
18–49 |
0,9 |
11–18 |
18–37 |
Полученный эффект от введения пластифицирующего реагента в бетонную смесь заключается в адсорбции коллоидных молекул ПАВ, входящих в состав добавки, на всех частицах твердой фазы цемента и заполнителя, тем самым покрывая поверхность зерен плотной пленкой со существенным отрицательным ζ-потенциалом (рис. 2) и затрудняя доступ воды к активным центрам.
Важнейшей характеристикой при строительстве является механическая прочность бетонного камня. Она определяется пределом прочности на сжатии, изгиб, растяжение и скалывание образцов разной конфигурации. С повышением и ускорением скорости набора прочностных показателей затвердевшего конгломерата улучшается качество цемента или другого вяжущего вещества.
Рис. 2. Механизм воздействия пластифицирующей добавки: 1 – зерна цемента или заполнителя;
2 – коллоидная молекула модификатора
с отрицательными зарядами на поверхности (анионные группы); 3 – водная оболочка [1, 2].
В нашем случае выявлено, что модифицирование бетонных систем способствует изменению кинетики набора прочности. Так, наибольший набор прочностных показателей бетона, твердеющего в условиях ТВО, установлен в основном для 0,3–0,5 % концентраций регулятора в затвердевших композитах (рис. 3, кривые 2–4). Такой эффект происходит благодаря тому, что в период равномерного схватывания происходит разрушение флокуляционной оболочки и молекулы пластифицирующего реагента адсорбируют игольчатые кристаллы эттрингита и таким образом освобождают часть иммобилизованной гидросульфоалюминатом кальция воды. В результате облегчается доступ воды к непрореагировавшим частицам цемента с последующим появлением новообразований и формированием прочного конгломерата.
В следствие последующего повышения концентрации СП–2ВУ (до 0,9 %) в цементобетонном композите отмечается постепенный спад прочностных показателей бетона (рис. 3, кривые 5, 6), что предположительно связано с уменьшением плотности за счет воздухововлечения, характерного для высоких концентраций пластифицирующего регулятора, в результате обязательного длительного перемешивания смеси.
Рис. 3. Зависимость прочностных характеристик от возраста бетонных композиций, твердеющих в условиях ТВО и содержащих различное количество
СП–2ВУ. Концентрация регулятора в бетоне, %:
1 – 0; 2 – 0,1; 3 – 0,3;4 – 0,5; 5 – 0,7; 6 – 0,9
Именно такая система способствует набору На основании полученных сроков схватывания и прочностных характеристик нами установлена оптимальная концентрации суперпластификатора СП–2ВУ, которая составляет 0,5 % необходимой скорости и прочности структурообразования. Более того, ИК–спектры подтверждают формирование более упорядоченной и стабильной структуры при введении регулятора в количестве 0,5 % (рис. 4), объясняя повышенную прочность цементного камня. Так, спектры цементного раствора с добавкой содержат в основном полосы поглощения, характерные для гидратированных клинкерных минералов. Это полосы валентных колебаний –Si–O–связей, присутствующих как в изолированных (900–950 см-1), так и в связанных (1100–1200, 833 см-1) кремний-кислородных тетраэдрах, алюмокислородных октаэдров (707–718, 592 см-1).
Рис. 4. ИК-спектр цементных растворов с 0,5 % концентрацией добавки СП–2ВУ
Первая полоса в спектре (рис. 4) отвечает главным образом колебаниям полимерных гидроксилов, а также хорошо выражено поглощение при 2850 и 2920 см-1. Полосы для комбинации деформационных и крутильных колебаний Н2О (2100–2300 см-1) в спектре четко прослеживаются. Полоса 1621–1626 см-1 для межслоевой воды также более дифференцирована.
Выводы. Таким образом, нами было достигнуто улучшение строительно-технологических характеристик модифицированного СП–2ВУ бетона. Ввод различных концентраций реагента в цементное тесто позволяет замедлить процесс его схватывания до 11,5 ч, что дополнительно сопровождается постепенным увеличением периода между началом и концом схватывания системы в ~ 2 раза по сравнению с обычным бетоном.
В присутствии СП–2ВУ в системе наблюдается изменение кинетики набора прочности модифицированных бетонов. Наибольший набор прочностных показателей бетона, твердеющего в условиях гидротермальной обработки, установлен в основном для 0,3–0,5 % концентраций регулятора в затвердевших композитах. Нами установлена оптимальная концентрация добавки (0,5 %), способствующая набору необходимой скорости структурообразования системы и формированию плотных и прочных структур твердения с высокими эксплуатационными характеристиками. Заметный прирост прочности образцов с содержанием 0,5 % модификатора в бетонной смеси составляет 40 %. При этом ИК-спектры подтверждают формирование более упорядоченной и стабильной структуры при введении СП–2ВУ в количестве 0,5 %, объясняя повышенную (в этом случае) прочность цементного камня.
1. Баженов Ю.М. Технология бетона: учебник. М.: Изд-во АСВ, 2002. 500 с.
2. Виноградова Л.А., Катаргина В.К., Копосов И.А. Основы технологии железобетонных изделий: учеб. пособие. Ивановск. гос. хим.-технол. ун-т. Иваново, 2016. 227 с.
3. Bazhenov Y., Alimov L., Voronin V. Concrete composites of double structure formation. В сборнике: MATEC Web of Conferences 26. Сер. "RSP 2017 - 26th R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering". 2017. С. 00015.
4. Ущеров-Марщак А., Кабусь А. Современный бетон. Информационное обозрение. Харков, Госпром. 2010. 42 с.
5. Баженов Ю.М. Пути развития строительного материаловедения: новые бетоны // Технологии бетонов. 2012. № 3-4 (68-69). С. 39-42.
6. Jing Z. et al. Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag // Journal of Materials Science. 2008. Т. 43. №. 7. С. 2356-2361.
7. Батраков В.Г. Модифицированные бетоны. Теория и практика. 2 е изд., перераб. и доп. М., 1998. 768 с.
8. Ahmedzade P., Yilmaz M. Effect of polyester resin additive on the properties of asphalt binders and mixtures // Construction and building materials. 2008. Т. 22. №. 4. С. 481-486.
9. Изотов В.С., Соколова Ю.А. Химические добавки для модификации бетона. М.: Палеотип, 2006. 244 с.
10. Ikotun B.D., Ekolu S. Strength and durability effect of modified zeolite additive on concrete properties // Construction and Building Materials. 2010. Т. 24. №. 5. С. 749-757.
11. Касторных Л.И. Добавки в бетоны и строительные растворы: учеб.-справ. Пособие. 2 е изд. Ростов н/Д: Феникс, 2007. 221 с.
12. Зоткин А.Г. Бетоны с эффективными добавками. М.: Инфра-Инженерия, 2014. 160 с.
13. Sanchez-Alonso E. et al. Evaluation of compactability and mechanical properties of bituminous mixes with warm additives // Construction and Building Materials. 2011. Т. 25. №. 5. С. 2304-2311.
14. Виноградова Л.А., Грачева Ю.Н. Влияние универсальной добавки БЕСТ на свойства бетона // Вестник ВГУИТ. 2018. Т. 80. № 4. С. 301-307. doihttps://doi.org/10.20914/2310-1202-2018-4-301-307.
15. Vinogradova L.A. Effect of introducing poliplast sp-3 superplasticizer on the properties of concrete // GLASS AND CERAMICS, Издательство: Springer New York Consultants Bureau. 2018. Т. 75. № 3-4. P. 160-162.