Аннотация и ключевые слова
Аннотация (русский):
Помол является важной технологической операцией в производстве строительных ма-териалов. От качества измельченного материала зависит качество изделия. Качество из-мельченного материала повышают путем внедрения в технологическую схему сепаратора, и помол происходит по, так называемому, замкнутому циклу. В статье представлены научно-технические разработки по созданию технологического модуля замкнутого цикла измельчения, конструкция которого позволяет повысить качество готового продукта, а также повысить производительность помольного агрегата.

Ключевые слова:
технологический модуль, помольный агрегат, измельчение, замкнутый цикл
Текст
Текст (PDF): Читать Скачать

Проведенные теоретические и экспериментальные исследования центробежных помольных агрегатов показали их эффективность при измельчении материалов с различными физико-механическими характеристиками [4, 5].

В то же время становится очевидным вопрос повышения степени измельчения материала, а, следовательно, и качества готового продукта, что свидетельствует о целесообразности дальнейших исследований помольных агрегатов вибрационно-центробежного типа.

Одним из вариантов повышения эффективности агрегата является организация процесса измельчения по замкнутому циклу.

При измельчении в многокамерных мельницах можно выделить три основные принципиальные схемы помола в замкнутом цикле [1] (рис. 1).

По схеме, представленной на рис. 1, а, материал, измельченный в первой камере, через разгрузочное устройство поступает в сепаратор; крупка из последнего попадает во вторую камеру для тонкого измельчения, которая работает в замкнутом цикле с сепаратором. Данная схема предусматривает короткий путь прохождения материала перед сепаратором. Такие схемы рекомендуются для помола многокомпонентных материалов с различной размалываемостью компонентов. Легкоразмалываемый компонент, попадая в сепаратор после камер грубого помола, выводится из процесса.

На рис. 1, б представлена схема работы многокамерной мельницы в замкнутом цикле, при которой сепарация каждой камеры измельчения осуществляется отдельным сепаратором, крупка из которого возвращается на доизмельчение в соответствующую камеру. Недостаток данной схемы измельчения – дороговизна оборудования.

По схеме, изображенной на рис. 1, в, продукт из первых двух камер поступает в сепаратор, крупка из которого домалывается окончательно в третьей камере, а тонкая фракция поступает в общий поток готового продукта третьей камеры. Так как крупка может переизмельчиться, фракция готового продукта будет неравномерной и, следовательно, эффективность измельчения недостаточна.

Разработанная схема замкнутого цикла измельчения с применением центробежного помольного агрегата позволяет исключить эти недостатки [2, 3].

Технологический модуль замкнутого цикла измельчения (рис. 2) содержит центробежный помольный агрегат 1 с тремя камерами помола, верхняя камера которого соединена с бункером 2 исходного материала, и центробежный воздушно-проходной сепаратор 3 с двумя зонами разделения. Центробежный помольный агрегат включает в себя станину 4, на которой жёстко закреплены вертикальные цилиндрические направляющие 5 с перемещающимся по ним ползунами 6. На станине 4 жестко закреплены опорные стойки 7, в которых установлены подшипники и эксцентриковый вал 8, содержащий на обоих концах противовесы 9. Эксцентриковый вал 8 соединен с рамой 10 прямоугольной формы. Рама выполняет роль шатуна в кривошипно-ползунном механизме, образованном из станины 4, эксцентрикового вала 8, рамы 10 и ползунов 6, для обеспечения необходимой траектории движения помольных камер, закреплённых на раме. На раме 10 горизонтально закреплены верхняя 11, средняя 12 и нижняя 13 помольные камеры. Каждая помольная камера содержит мелющие тела, соответствующие типу помола в камере.

 

a          б

 

в

 

Рис. 1. Технологические схемы измельчения в многокамерных мельницах замкнутого цикла:

1 – исходный материал; 2 – измельчитель; 3 – транспортирующее устройство; 4 – сепаратор;

5 – крупка из сепаратора; 6 – готовый продукт

 

 

 

 

 

Рис. 2. Технологический модуль замкнутого цикла измельчения

 

В торцах помольных камер встроены ограничительные 14 и классификационные 15 решетки по ходу движения соответственно. В торцах на выходе материала из верхней 11 и средней12 помольных камер закреплены конфузоры 16, а в торцах на входе материла средней12 и нижней 13 помольных камер –диффузоры 17. Ограничительные решётки 14 предназначены для удержания мелющих тел внутри помольной камеры, а классификационные решётки 15 предназначены для классификации материала. Наличие ограничительных и классификационных решёток обеспечивает стабильный технологический режим в каждой помольной камере. Конфузоры 16 и диффузоры 17 имеют конусный вид. К конфузорам 16 с помощью хомутов крепятся газоходы 18, а к диффузорам 17 с помощью хомутов крепятся газоходы 19, которые соединены с центробежным воздушно-проходным сепаратором.

Центробежный воздушно-проходной сепаратор 3 с двумя зонами разделения состоит из загрузочного патрубка 20, разгрузочного патрубка 21 грубого материала, разгрузочного патрубка 22 материала средней фракции. Зона разделения материала находится над загрузочным патрубком 20 и разгрузочными патрубками 21 и 22. В верхней части зоны разделения находятся радиальные лопасти 23. Вверху центробежного воздушно-проходного сепаратора находится патрубок 24 выхода газоматериальной смеси.

Загрузочный патрубок 20 сепаратора соединен с верхней 11 и средней 12 камерами помола агрегата через газоходы 18, а с нижней камерой 13 через газоход 18, который крепится к выходному патрубку помольного агрегата. Разгрузочный патрубок 21 грубого помола сепаратора соединен со средней помольной камерой 12 с помощью газохода 19. Разгрузочный патрубок 22 средней фракции сепаратора соединен с нижней камерой 13 с помощью газохода 19.

Способ замкнутого цикла измельчения с применением центробежного помольного агрегата с тремя камерами помола заключается в следующем.

Исходный материал из бункера 2 непрерывно поступает в загрузочный патрубок центробежного помольного агрегата 1 и далее через ограничительную решетку 14 поступает в верхнюю помольную камеру 11, в которой обеспечивается грубое измельчение исходного материала.

Воздушным потоком, создаваемым вентилятором (на рис. не показан), измельчённый материал перемещается вдоль камеры, проходит через классификационную решётку 15, конфузор 16 и через газоход 18 поступает в загрузочный патрубок 20 центробежного воздушно-проходного сепаратора 3.

В сепараторе в зоне разделения за счёт закручивания газоматериального потока радиальными лопастями 23 происходит разделение материала под действием центробежных сил в комбинации с силами тяжести частиц различной массы на материал грубой фракции, материал средней фракции и материал тонкой фракции.

Материал грубой фракции из разгрузочного патрубка 21 по газоходу 19 через диффузор 17 и ограничительную решетку 14 поступает в среднюю помольную камеру 12, которая движется по эллиптической траектории и обеспечивает помол исходного материала до средней фракции. Затем за счёт воздушного потока измельченный материал через классификационную решетку 15 и конфузор 16 поступает в газоход 18 и далее в загрузочный патрубок 20 сепаратора.

Материал средней фракции из разгрузочного патрубка 22 по газоходу 19 через диффузор 17 и ограничительную решетку 14 поступает в нижнюю помольную камеру 13, двигающуюся по круговой траектории, в которой обеспечивается тонкое измельчение исходного материала. За счёт воздушного потока измельченный материал поступает в газоход и далее в загрузочный патрубок сепаратора.

Измельчённый материал тонкой фракции (готовый продукт) вместе с газовым потоком поднимается вверх и через патрубок 24 газоматериального смеси поступает на дальнейшую обработку газоматериального потока в циклон на очистку воздуха от частиц. Процесс помола осуществляется в непрерывном режиме.

Материал проходит три стадии помола с различными режимами работы в одной мельнице с тремя камерами помола. При этом после каждой камеры помола проходит классификация в центробежном воздушно-проходном сепараторе. Это дает большую гарантию одинаковой дисперсности материала, что достигается за счет обеспечения непрерывного вывода готового продукта на различных стадиях процесса и возврата недоизмельчённого материала на дальнейшее измельчение до состояния готового продукта.

Разработанный технологический модуль, конструкция которого позволяет выводить из всех рабочих камер агрегата частицы материала с характеристиками, соответствующими готовому продукту, предотвращает его переизмельчение, а, следовательно, обеспечивает требуемое качество готового продукта и снижение энергозатрат на измельчение, тем самым повышает эффективность помола.

Список литературы

1. Дешко Ю.И., Креймер М.Б., Крытхин Г.С. Измельчение материалов в цементной промышленности. М.: Стройиздат, 1966. 275с.

2. Заявка 2017118016 Российская Феде-рация, Технологический модуль и способ за-мкнутого цикла измельчения / Уральский В.И., Севостьянов В.С., Синица Е.В., Ураль-ский А.В., Сажнева Е.А., Фарафонов А.А., заявитель ФГБОУ БГТУ им. В.Г. Шухова; приоритет 23.05.2017.

3. Пат. 2277973 Российская Федерация, В 02С 17/08. Помольно-смесительный агрегат / Гридчин А.М., Севостьянов В.С., Лесовик В.С., Уральский В.И., Синица Е.В.; заявитель и патентообладатель ООО «ТК РЕЦИКЛ»; опубл. 20.06.06, Бюл. №17.]

4. Уральский А.В., Севостьянов В.С. Многофункциональный центробежный агре-гат с параллельными помольными блоками // Вестник БГТУ им. В.Г. Шухова. 2010. №1. С. 106-112.

5. Уральский В.И., Синица Е.В., Ураль-ская Л.С., Фарафонов А.А. Центробежный агрегат комбинированного способа измельче-ния // Вестник БГТУ им. В.Г. Шухова. 2017. №6. С. 115-119.


Войти или Создать
* Забыли пароль?