THE STUDY OF DEHYDRATION OF COLEMANITE IN NON-ISOTHERMAL CONDITIONS
Abstract and keywords
Abstract (English):
The regularities of colemanite dehydration under non-isothermal conditions are investigated. It is established that colemanite, supplied to the Russian Federation from Turkey, has calcite in its composition. The chemical composition of colemanite is determined using the X-ray fluorescence analysis method. It is shown that the processes of dehydration of colemanite under non-isothermal conditions at a heating rate of 10 °С / min are accompanied by two endothermic effects at 660,7 K and 675,7 K with a total mass loss of 17,3 %. The rate of mass loss of colemanite from the temperature at heating up to 773 K, at which colemanite dehydrates and passes into the amorphous phase, is also studied. The regularities of changes in the rate of dehydration of colemanite are established. It is shown that the maximum values of the dehydration rate of colemanite are observed in the temperature range of 653–678 K. The activation energy of colemanite dehydration is determined to be 86,000 J/mol. Based on the experimentally obtained data, the rate constant of the colemanite dehydration process is calculated. The process of dehydration of colemanite is adequately described by the formal equation of kinetics. Most of the kinetic curve is adequately described by the resulting kinetic equation. It is proposed to describe the mechanism of dehydration of colemanite by a two-stage process, accompanied at the first stage by the removal of crystallization water, and at the second stage-by the removal of hydroxyl groups

Keywords:
colemanite, dehydration, non-isothermal conditions, activation energy, endothermic effects, kinetic equation
References

1. Zhernovaya N.F., Doroganov E.A., Bessmertny V.S., Dorokhova E.S., Zhernovoy F.E. Glass-ceramic composite with multifunctional colemanite additive [Steklokeramicheskiy kompozit s mul'tifunktsional'noy kolemanitnoy dobavkoy]. Perspective materials. 2016. No. 5. Pp. 51-58. (rus)

2. Zhernovaya N.F., Bessmertny V.S., Zhernovoy F.E., Dorokhova E.S., Izotova I.A. Non-shrink facing material based on cullet and colemanite [Bezusadochnyy oblitsovochnyy material na osnove stekloboya i kolemanita]. Glass and Ceramics. 2016. No. 3. Pp. 34-37. (rus)

3. Dorokhova E.S., Zhernovaya N.F., Bessmertny V.S., Zhernovoy F.E., Tarasova E.E. Management of the structure of a porous glass-ceramic material [Upravlenie strukturoy poristogo steklokeramicheskogo materiala]. Glass and Ceramics. 2017. No. 3. Pp. 28-31. (rus)

4. Guloyan Yu.A. Technology of glass and glass products [Tekhnologiya stekla i stekloizdeliy]. Vladimir: TRANZIT-IKS, 2015. 710 p. (rus)

5. Pavlyukevich Y.G., Levitsky I.A., Mazur N.In. The use of colemanite in the production of glass fiber [Ispol'zovanie kolemanita v proizvodstve steklyannogo volokna]. Glass and ceramics. 2009. No. 10. Pp. 9-13. (rus)

6. Pavlyukevich Y.G., Filo L.F., Whips S.P., Calguner E.A. Influence of boron-containing components on the technological properties of basaltic melts and glasses [Vliyanie borsoderzhashchikh komponentov na tekhnologicheskie svoystva bazal'tovykh rasplavov i stekol]. Glass and ceramics. 2018. No. 11. Pp. 7-12. (rus)

7. Kondrashov V.I. Variable manufacturing decorative and functional float glass [Variativnoe proizvodstvo dekorativnogo i funktsional'nogo float-stekla]. Glass Russia. 2014. No. 8. Pp. 22-24. (rus)

8. Yadollahi A., Nazemi E., Zolfaghari A., Ajorloo A.M., Optimization of thermal neutron shield concrete mixture using artifical neural network. Nucl. Eng. Des. 2016. No 305. Pp. 146-155.

9. Demir F., Budak G., Sahin R., Karabulut A., Oltulu M., Serifoglu K., Un A. Radiation transmission of heavyweight and normal-weight concretes containing colemanite for 6 MV and 18 MV X-rays using linear accelerator. Ann. Nucl. Energy. 2010. No. 37. Pp. 339-344.

10. Erdogmus E., Erdoğan Y., Gencel O., Targan S., Avciata U., Influence of colemanite admixture on Portland cement durability. Adv. Cem. Res. 2012. No 24. Pp. 155-164.

11. Glinicki M.A., Antolik A., Gawlicki M., Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar. Constr. Build. Mater. 2018. No 164. Pp. 731-738.

12. Fedosov S.V., Akulova M.V., Slizneva T.E., Potemkina O.V. Thermogravimetric studies of phase transformations in cement compositions on a mechanoactivated solution of sodium silicate [Termogravimetricheskie issledovaniya fazovykh prevrashcheniy v tsementnykh kompozitsiyakh na mekhanoaktivirovannom rastvore silikata natriya]. Vestnik MGSU. 2013. Pp. 111-118. (rus)

13. Fedosov S.V., Akulov V.M., Potemkin O.V., Emelin V.Yu., Belyakova N.A. The study of changes in the phase composition of the foam with the addition of liquid glass and cullet thermogravimetric method [Issledovanie izmeneniya fazovogo sostava penobetona s dobavleniem zhidkogo stekla i stekloboya termogravimetricheskim metodom]. Construction and reconstruction. 2013. No. 3 (47). Pp. 69-77. (rus)

14. Hartung E., Heide K. Investigation of Phase Transitions of Hydrated Borates at Non-isothermal Conditions. Krist. Tech. 1978. Pp. 57-60.

15. Waclawska, Stoch L., Paulik J., Paulik F. Thermal decomposition of colemanite. Thermochim. Acta. 1988. No. 126. Pp. 307-318.

16. Frost R.L., Scholz R., Ruan X., Fernandes R.M. Lima, Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH3)‧H2O). J. Therm. Anal. Calorim. 2016. No 124. Pp. 131-135.

17. Rusen, Investigation of structural behavior of colemanite depending on temperature. Rev. Rom. Mat. 2018. No 48. Pp. 245-250.

18. Paolo Lotti, Davide Comboni, Lara Gigli, Lucia Carlucci, Eros Mossini, Elena Macerata, Mario Mariani, Gatta G. Diego. Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials. 2019. Vol. 203. Pp. 679-686.

19. Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. (Eds.) Handbook of Mineralogy, Mineralogical Society of America, Chantilly, http://www.handbookofmineralogy.org/pdfs/colemanite.pdf

20. Helvaci C., Stratigraphy, Mineralogy, and Genesis of the Bigadiç Deposits, Western Turkey. Econ. Geol. 1995. No 90. Pp. 1237-1260.

21. Gorshkov V.S., Timashev V.V., Savelyev V.G. Methods of physical and chemical analysis of astringent substances: Textbook. [Metody fiziko-khmicheskogo analiza vyazhushchikh veshchestv: Ucheb. posobie]. M.: Higher School, 1981. 335 p. (rus)

22. Feklichev V.G. Diagnostic spectra of minerals [Diagnosticheskie spektry mineralov]. M.: Nedra, 1977. 228 p. (rus)

23. Bondarenko N.I., Zdorenko N.M., Lyashko A.A., Voloshko N.I., Antropova I.A., Burlakov N.M. Investigation of dehydration kinetics of aluminate cement hydroaluminates [Issledovanie kinetiki degidratatsii gidroalyuminatov alyuminatnogo tsementa]. International Journal of Experimental Education. 2015. No. 12. Ch. 2. 252 p. (rus)

24. Ramachandran V.S. Application of differentiated thermal analysis in cement chemistry [Primenenie differentsirovannogo termicheskogo analiza v khimii tsementov]. Ed. by V. B. Ratinov. Per. s engl. M., Stroyizdat, 1977. 408 p. (rus)

25. Brown M., Dollimore D., Galvey A. Reactions of solid bodies: Trans. from English [Reaktsii tverdykh tel: Per. s angl.]. M.: Mir, 1983. 360 p. (rus)


Login or Create
* Forgot password?