Russian Federation
Belgorod, Russian Federation
Belgorod, Belgorod, Russian Federation
GRNTI 67.09 Строительные материалы и изделия
BBK 383 Строительные материалы и изделия
Currently in Russia, great importance is attached to actual issues of energy saving and energy efficiency in construction. Valid regulations require addressing issues related to improving the energy efficiency of buildings. The development and manufacture of new types of effective thermal insulation materials is one of the ways to solve assigned tasks. The use of industrial waste from mining and processing plants as a filler for polyurethane foam is considered in this paper. Samples from the filtration field of the tailings of Stoilensky GOK from various sites are taken as the studied raw materials; their granulometric, chemical compositions and harmonic diameters of the filler particles are determined. According to the calculation results, the dependence of the foaming coefficient on the average harmonic diameter of the filler is determined. The experiment-planning matrix is developed; according to its results, mathematical models are constructed for the dependence of the foaming coefficient of laboratory samples of polyurethane foam filled with tails. Three tail zones based on the results of sampling are considered. Analyzing the obtained results, a quantitative and qualitative assessment of the influence of each factor individually and their combination on the change in the “composition - properties” system is derived.
polyurethane foam, filler, mathematical modeling, foaming coefficient, mining waste, harmonic diameter
В данной статье впервые предложен вариант наполнения пенополиуретана промышленными отходами горно-обогатительных комбинатов, а конкретно – отходами мокрой сепарации железистых кварцитов (далее хвосты) [1–6]. Схема поля фильтрации хвостов представлена на рис. 1, 2.
Рис. 1. Схема поля фильтрации хвостов: 1 – магистральный пульпопровод; 2 – дамба из водоупора;
3 – распределительный трубопровод; 4 – основное поле фильтрации; 5 – участок отложения иловых остатков хвостов; 6 – направления растекания пульпы
Рис. 2. Схема поля фильтрации хвостов в разрезе: 1 – магистральный пульпопровод; 2 – дамба из водоупора;
3 – распределительный трубопровод; 4 – основное поле фильтрации; 5 – участок отложения иловых остатков хвостов; 6 – хвосты, расположенные в воде; 7 – направления растекания пульпы
После отбора образцов с полей фильтрации хвостов определялся их химический (табл. 1) и гранулометрический (табл. 2) составы.
Таблица 1
Химический состав образцов материала
№ образца |
Химический состав, % |
||||||||
SiO2 |
Fe общ. |
Fe2O3 |
FeO |
CaO |
MgO |
Al2O3 |
Ост. |
||
Зона 1 |
1 |
66,3 |
12,2 |
9,1 |
5,6 |
2,3 |
2,5 |
0,8 |
1,2 |
2 |
65,4 |
11,8 |
9,5 |
5,9 |
2,6 |
2,8 |
0,5 |
1,5 |
|
3 |
66,8 |
12,6 |
9,7 |
4,8 |
2,1 |
2,1 |
0,48 |
1,42 |
|
4 |
66,3 |
13,1 |
8,6 |
4,9 |
2,9 |
2,8 |
0,53 |
1,07 |
|
5 |
65,8 |
12,8 |
9,4 |
5,2 |
2,5 |
2,3 |
0,59 |
1,4 |
|
Среднее значение |
66,12 |
12,5 |
9,26 |
5,28 |
2,48 |
2,5 |
0,58 |
1,318 |
|
Зона 2 |
6 |
67,7 |
10,8 |
10,3 |
5,3 |
1,8 |
1,6 |
0,9 |
1,6 |
7 |
68,3 |
10,3 |
11,5 |
4,4 |
1,7 |
1,9 |
1,2 |
0,7 |
|
8 |
66,9 |
11,1 |
10,8 |
5,6 |
2,1 |
1,7 |
0,7 |
1,1 |
|
9 |
68,1 |
10,8 |
11,3 |
4,7 |
1,5 |
2,1 |
0,8 |
0,7 |
|
10 |
66,8 |
11,2 |
10,9 |
5,1 |
1,9 |
1,8 |
1,1 |
1,2 |
|
Среднее значение |
67,56 |
10,84 |
10,96 |
5,02 |
1,8 |
1,82 |
0,94 |
1,06 |
|
Зона 3 |
11 |
68,7 |
9,6 |
12,2 |
5,1 |
1,3 |
1,2 |
1,2 |
0,7 |
12 |
69,3 |
8,1 |
12,1 |
4,8 |
1,8 |
1,5 |
1,3 |
1,1 |
|
13 |
67,8 |
9,3 |
12,8 |
4,5 |
1,5 |
1,3 |
0,9 |
1,9 |
|
14 |
69,7 |
9,1 |
11,1 |
4,2 |
1,9 |
1,8 |
1,4 |
0,8 |
|
15 |
68,7 |
8,8 |
12,1 |
4,8 |
1,7 |
1,7 |
1,1 |
1,1 |
|
Среднее значение |
68,84 |
8,98 |
12,06 |
4,68 |
1,64 |
1,5 |
1,18 |
1,12 |
Проведенные исследования показали, что по своему химическому составу образцы не имеют значительных отличий (табл. 1), но по гранулометрическому составу они отличаются (табл. 2). При воздействии гидравлической энергии водного потока происходит фракционирование частиц хвостов и их дифференциация по крупности и удельной массе различных минералов [7–11]. Самые крупные и тяжелые частицы выпадают вблизи места выпуска пульпы и формируют на хвостохранилищах так называемую зону слива или выпуска пульпы. Эта зона распространяется примерно на 50 м. от места сброса (зона 1). Средние по размерам и удельной массе частицы формируют промежуточные зоны общей шириной 120–170 м (зоны 2 и 3). Самые мелкие и легкие частицы сносятся в крайнюю зону покрываются водой и в последствии образую так называемые иловые осадки (зона 4). Схема расположения участков хвостов в зависимости от их гранулометрического состава приведена на рис.3. Такая структура расположения хвостов остается после завершения намыва поля фильтрации.
Рис. 3. Схема расположения участков хвостов в зависимости от их гранулометрического состава
(отбор проб материала по зонам)
Таблица 2
Гранулометрический состав лабораторных проб материала
№ Образца |
Содержание фракций, %, при крупности фракций, мм |
|||||
1-0,5 |
0,5-0,25 |
0,25-0,1 |
0,1-0,05 |
<0,05 |
||
Зона 1 |
1 |
18,5 |
28,6 |
39,3 |
8,8 |
4,8 |
2 |
21,3 |
28,7 |
36,2 |
10,5 |
3,3 |
|
3 |
20,7 |
27,4 |
38,8 |
9,4 |
3,7 |
|
4 |
22,4 |
29,3 |
37,2 |
8,3 |
2,8 |
|
5 |
20,3 |
26,7 |
40,5 |
9,3 |
3,2 |
|
Среднее значение |
20,64 |
28,14 |
38,4 |
9,26 |
3,56 |
|
Зона 2 |
6 |
10,6 |
18,3 |
47,1 |
14,4 |
9,6 |
7 |
8,1 |
19,6 |
47,8 |
13,7 |
10,8 |
|
8 |
9,9 |
18,8 |
46,1 |
12,4 |
12,8 |
|
9 |
9,2 |
20,1 |
48,2 |
13,3 |
9,2 |
|
10 |
8,3 |
18,9 |
46,8 |
13,5 |
12,4 |
|
Среднее значение |
9,22 |
19,14 |
47,2 |
13,46 |
10,96 |
|
Зона 3 |
11 |
4,1 |
9,7 |
53,6 |
16,4 |
16,2 |
12 |
3,8 |
8,6 |
56,1 |
15,2 |
16,3 |
|
13 |
4,7 |
7,8 |
55,8 |
17,1 |
14,6 |
|
14 |
5,1 |
8,4 |
56,2 |
18,2 |
12,1 |
|
15 |
3,4 |
8,1 |
54,6 |
16,6 |
17,3 |
|
Среднее значение |
4,22 |
8,52 |
55,26 |
16,7 |
15,3 |
Для дальнейших исследований рассчитывался показатель, характеризующий дисперсность хвостов одним числом – гармоническим диаметром [12–14]. Гармонический диаметр представляет собой диаметр частиц некоторого однородного грунта, имеющего те же свойства, что и данный разнозернистый грунт. Если предположить, что грунт состоит из n одинаковых шарообразных частиц с диаметром, который мы обозначим Dr, то поверхность скелета будет равна [15–17]:
а вес
gc
где
Рассмотрим теперь грунт, состоящий из смеси n1 частиц с диаметром Dr1, n2 частиц с диаметром Dr2 и так далее. Тогда их общая поверхность F и вес g будут соответственно равны:
g =
Вес каждой i-й группы из ni частиц равен:
gi
Если вес пробы грунта принять за 1, то
∑
И тогда гармонический средний диаметр рассчитывается по формуле:
где gi – вес каждой i-ой группы частиц; Dri – диаметр одинаковых шарообразных частиц каждой i-ой группы частиц.
Учитывая тот факт, что для определения гранулометрических составов грунта мы использовали навески равные 100 г, формула примет следующий вид:
Определяем гармонический диаметр для зоны 1 по формуле (8):
Определяем гармонический диаметр для зоны 2 по формуле (8):
Определяем гармонический диаметр для зоны 3 по формуле (8):
На рис. 4. приведена зависимость коэффициента вспенивания наполнителя от его среднего гармонического диаметра.
Рис. 4. Зависимость коэффициента вспенивания наполнителя от его среднего гармонического
диаметра
Из рис. 4. и опытов, проведенных с различными минеральными наполнителями, имеющими различный гранулометрический состав следует, что при увеличении количества пылеватых частиц в составе наполнителя коэффициент вспенивания уменьшается, то же самое происходит при увеличении количества крупных частиц. Это связано с тем, что пылеватые частицы попадая во влажную среду компонентов ППУ растворяются и создают пленку, препятствующую попаданию воздуха внутрь состава при перемешивании и вспенивании. Крупные частицы (размером более 1 мм) являются достаточно объемными, что не позволяет им встраиваться в структуру пенополиуретана, а их вес значительно затрудняет сам процесс перемешивания компонентов и последующее вспенивание ППУ.
При планировании эксперимента в качестве варьируемых факторов были приняты: расход хвостов и соотношение между компонентами. Для обеспечения более точного описания математических моделей пенополиуретана в зависимости от варьируемых факторов в виде полиномов второй степени было применено ортогональное центральное планирование. Условия планирования с указанием натуральных значений кодируемых факторов представлены в табл. 3 [18].
Средний уровень расхода хвостов, глины и песка был принят 30 % от массы полиуретана с шагом варьирования 20 %. Соотношение компонентов полиизоцианата и полиола на среднем уровне было принято 1, т.к. рекомендуемое соотношение полиуретановых компонентов без наполнителя составляет 100 : 100. Интервал варьирования составляет 0,1.
Таблица 3
Условия планирования эксперимента
Фактор |
Уровень варьирования |
Интервал варьирования |
|||
Натуральный вид |
Кодированный вид |
+1 |
0 |
-1 |
|
Расход наполнителя, % |
Х1 |
50 |
30 |
10 |
20 |
Соотношение компонентов |
Х2 |
1,1 |
1,0 |
0,9 |
0,1 |
Сущность метода заключается в установлении математической зависимости между заданными свойствами материала и расходом, свойствами составляющих компонентов и технологическими факторами. Количество экспериментов, зависящее от числа факторов и условий решаемой задачи, проводилось по заданному соответствующему плану. Матрица планирования и экспериментальные данные представлены в табл. 4.
Результаты опытов обрабатывают с использованием методов математической статистики, получая при этом алгебраические уравнения, отражающие связь между исследуемыми свойствами и исходными факторами; с помощью уравнений регрессии можно строить графики и номограммы, что позволяет оперативно установить значение выходного параметра при изменении каждого фактора. При использовании номограмм можно поддерживать на заданном уровне выходной параметр, изменяя соответствующим образом факторы, входящие в уравнение регрессии.
Таблица 4
Матрица планирования
и экспериментальные данные
№ опыта |
Факторы |
Квсп образцов пенополиуретана, наполненного хвостами |
|||
|
Х1 |
Х2 |
хвосты зоны 1, ×1000 |
хвосты зоны 2, ×1000 |
хвосты зоны 3, ×1000 |
1 |
+1 |
+1 |
630 |
520 |
420 |
2 |
+1 |
-1 |
610 |
510 |
410 |
3 |
-1 |
+1 |
1070 |
680 |
480 |
4 |
-1 |
-1 |
1050 |
670 |
470 |
По результатам полученных уравнений были построены математические модели зависимости коэффициента вспенивания лабораторных проб пенополиуретана от исследуемых факторов (рис. 5–7).
Рис. 5. Математическая модель зависимости коэффициента вспенивания лабораторных проб пенополиуретана, наполненного хвостами 1 зоны
Рис. 6. Математическая модель зависимости коэффициента вспенивания лабораторных проб пенополиуретана, наполненного хвостами 2 зоны
Рис. 7. Математическая модель зависимости коэффициента вспенивания лабораторных проб пенополиуретана, наполненного хвостами 3 зоны
При переходе от кодированных факторов к натуральным, найдено оптимальное соотношение компонентов, которое составляет 100:100.
Таким образом, выявленные закономерности изменения свойств пенополиуретанов и полученные математические зависимости позволяют дать количественную и качественную оценку влияния каждого фактора в отдельности, а также их совокупности на изменение системы «состав – свойства» и могут быть использованы для производственных рецептур наполненных пенополиуретанов и прогнозирования их физико-механических свойств.
1. Vorobiev V.A., Andrianov P.A. Polymer technology [Tekhnologiya polimerov]. M.: Higher School. 1980. 303 p. (rus)
2. Fukuhiro H., Genjiro H., Yoshio I. Hidrophilic polyurethane and application (II) (polyurethane - gypsum foam). Plastics Industry News. 1981. May. Pp. 71-74.
3. Gorlov Yu.P. Technology of thermal insulation materials and products [Tekhnologiya teploizolyacionnyh materialov i izdelij]. Moscow: Higher School. 1989. 383 p. (rus)
4. Suleymanova L.A., Kocherzhenko A.V. Study of the influence of natural fillers on the multiplicity of foaming of insulators based on polyurethane foam [Teploizolyacionnyj kompozit na osnove mestnyh neorganicheskih napolnitelej]. V sbornike dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii «Naukoemkie tekhnologii i innovacii». Belgorod, 2017. Pp. 185-190. (rus)
5. Herrington R., Hock K. Flexible Polyurethane Foams - Dow Chemical Company 1997. 312 p.
6. Berlin A.A., Shutov F.A. Strengthened gas-filled plastics [Uprochnennye gazonapolnennye plastmassy]. M.: Chemistry. 1980. 224 p. (rus)
7. Vorobiev V.A. Technology of building materials and products based on plastics [Tekhnologiya stroitel'nyh materialov i izdelij na osnove plast-mass]. M.: Higher School, 1974. 472 p. (rus)
8. Hildebrant X. Polymer materials in construction [Polimernye materialy v stroitel'stve]. Trans. with Ger. M.: Build a building, 1969. 272 p.
9. Godilo P.V., Paturoev V.V., Romanenkov I.G. Unpressly foam in building structures [Bespressovye penoplasty v stroitel'nyh konstrukciyah]. M.: Stroiizdat, 1969. 173 p. (rus)
10. Benning C.J. Plastics foams. Vol. 1 - Ney York, London, Sydney, Toronto. John Wiley a. Sons. 1969. 620 p.
11. Shvetsov G.A., Alimova D.U., Baryshnikova M.D. Plastics processing technology [Tekhnologiya pererabotki plasticheskih mass]. M.: Chemistry, 1988. 512 p. (rus)
12. Korneev A.D., Shulepov S.K. Polyisocyanate-based foam polymer concrete structure formation [Strukturoobrazovanie penopolimerbetona na osnove poliizocianata]. Effektivnye stroitel'nye materialy dlya Nechernozem'ya: Tez. dokl. nauch.-tekhn. konf. Saransk: Ruzaevsky printer. 1986. p. 18. (rus)
13. Suleymanova L.A., Kocherzhenko A.V., Marushko M.V. Thermal insulation composite based on local inorganic fillers [Issledovanie vliyaniya prirodnyh napolnitelej na kratnost' vspenivaniya uteplitelej na osnove penopoliuretana]. V sbornike dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii «Nauka i innovacii v stroitel'stve» (k 45-letiyu kafedry stroitel'stva i gorodskogo hozyajstva). Belgorod. 2016. Pp. 185-189. (rus)
14. Vorobiev V.A., Andrianov P.A. Polymeric insulation materials [Polimernye teploizolyacionnye materialy]. M.: Build a building, 1972. 320 p. (rus)
15. Berlin A.A., Shutov F.A. Gas-filled high polymer chemistry and technology [Himiya i tekhnologiya gazonapolnennyh vysokopolimerov]. M.: Science. 1979. 390 p. (rus)
16. Friedli H.R. In Reaction Polymers - Hansen Munich. 1992. 68 p.
17. Lovering E.G., Laidler K.J. Thermochemical studies of some alcohol - isocyanate reactions - Can. J. Chemical, 1962. Pp. 30-31.
18. Suleimanova L.A., Pogorelova I.A. Computer simulation of technological and economic problems [Komp'yuternoe modelirovanie tekhnologo-ehkonomicheskih zadach]. Belgorod, 2009. 184 p. (rus)