Бараковских Д.С., аспирант, Шишкин С.Ф., канд. техн. наук, доц., Шишкин А.С., канд. техн. наук, доц. Уральский федеральный университет им. первого Президента России Б. Н. Ельцина

ДВИЖЕНИЕ ЧАСТИЦ В РАЗГОННОЙ ТРУБКЕ СТРУЙНОЙ МЕЛЬНИЦЫ ПРИ МАЛЫХ КОНЦЕНТРАЦИЯХ

d.s.barakovskikh@urfu.ru

Проведены экспериментальные исследования процесса разгона твердых частиц в эжекторной струйной мельнице. Экспериментальная установка позволяет варьировать параметрами газового потока и измерять методом треков скорость частиц в конце разгонной трубки. В опытах использовались узкие фракции шарообразных стеклянных частиц. Получены уравнения одномерного движения частиц и газового потока в разгонной трубке с учетом трения. Предложен метод расчета процесса разгона твердых частиц с учетом сжимаемости воздушного потока и граничных условий. Полученная система уравнений позволяет рассчитать изменение скорости газового потока, плотности, давления, температуры и скорости частиц по длине разгонной трубки. Проведенная экспериментальная проверка расчетной модели показала ее адекватность. Разработанная методика позволяет производить расчет для частиц различного диаметра, выбрать давление, массовый расход, а также определить необходимые диаметр сопла, диаметр и длину разгонной трубки, что позволит обеспечить максимальную эффективность процесса разгона при малой расходной концентрации материала.

Ключевые слова: струйная мельница, эжектор, разгонная трубка, уравнение движения, дисперсные частицы, сжимаемый газ, скорость, разгон, метод треков.

Процесс разгона твердых частиц в струйной мельнице во многом определяет эффективность измельчения, поэтому данному вопросу уделяется внимание во многих работах [1-6]. Часть исследователей рассматривает косвенные методы определения конечной скорости разгона частиц [1]. Во многих работах приводятся решения дифференциального уравнения движения частиц. Однако в процессе решения принимается, что плотность газа не меняется по длине разгонной трубки, либо решение приводится без учета конкретных граничных условий [2]. На практике, большинство струйных мельниц включает в себя эжектор со сверхзвуковым соплом и разгонной трубкой. Вследствие высоких скоростей движения газа необходимо учитывать его сжимаемость, т.е. изменение скорости и плотности газа вдоль разгонной трубки.

Целью настоящей работы является разработка метода расчета процесса разгона твердых частиц с учетом сжимаемости воздушного потока и граничных условий, т.е. параметров газа в начале и конце разгонной трубки. Для исследования и экспериментальной проверки расчетных параметров была разработана экспериментальная установка, позволяющая определить скорость частиц на вылете из разгонной трубки. Для определения скорости частиц на выходе разгонной трубки использовался, применяемый многими исследователями, метод треков [7].

Схема экспериментальной установки представлена на рис. 1. Она включает в себя: патрубок 1 подвода сжатого воздуха от компрессора, ресивер 2, соединенный патрубком 3 с эжектором 4, который состоит из камеры 5, сверхзвукового сопла 6, разгонной трубки 7 и загрузочной воронки 8. Сосуд 9 и гибкий шланг 10 предназначены для подачи частиц. Стандартная диафрагма 11 и дифференциальный манометр 12 предназначены для измерения расхода эжектируемого воздуха. Разгонная трубка входит с темную камеру 13, которая содержит источник света 14, фотокамеру 15 и фильтрующий рукав 16 для улавливания частиц материала. Краны 17 и 18 позволяют регулировать соответственно расход основного G_{e} и эжектируемого G_{9} воздуха. Манометр 19 предназначен для измерения давления заторможенного газа перед сверхзвуковым соплом.

Установка имеет следующие геометрические параметры: длина разгонной трубки $L_1 = 250$ мм, диаметр D = 10,7 мм, диаметр сверхзвукового сопла ds = 5.5 мм. Порядок проведения опытов был следующий. В ресивере 2 измерялась температура, и с помощью крана 17 устанавливалось необходимое давление торможения p_0 перед сверхзвуковым соплом. По параметрам заторможенного газа и по известной методике [3, 11] рассчитывался массовый расход основного высоконапорного воздуха G_e через сверхзвуковое сопло. С помощью крана 18 по разности давлений на стандартной диафрагме 11 устанавливался необходимый массовый расход эжектируемого воздуха G_3 . Таким образом, суммарный

(1)

измеренный расход сжатого воздуха G через разгонную трубку определялся как сумма расходов

Рис. 1. Схема установки для исследования разгона частиц в струйной мельнице

После установки необходимого режима осуществлялась подача частиц и фотографирование треков частиц в отраженном свете на вылете из разгонной трубки. В качестве частиц использовалась монофракция шарообразных стеклянных частиц с плотностью $\rho_t = 2608,7$ кг/м³, средним диаметром dc = 112,5 мкм. Фото частиц приведено на рис. 2. Съемка осуществлялась фотоаппаратом Canon EOS 7D с объективом EF24-70mm f/2,8L USM при следующих настройках: фокусное расстояние 24 мм; вы-

держка 1/2000 с; диафрагма f/5,6; светочувствительность ISO-6400; режим измерения матричный, разрешение 5184х3456. В качестве источника света использовалась специальная лампавспышка, которая была синхронизирована с выдержкой фотоаппарата. По длине треков определялась фактическая скорость частиц. В качестве примера на рис.3. приведены фото треков частиц. В табл.1 приведен расчет скорости частиц по приведенным фотографиям.

 $G = G_{\beta} + G_{\beta}$.

Рис. 2. Фрагмент фотографии шарообразных стеклянных частиц (цена деления 14 мкм)

Рис. 3. Фото треков частиц на выходе из разгонной трубки (инверсия)

Таблица 1

Расчет фактической скорости частиц по длине треков

Номер штриха	Длина трека, мм	Выдержка, с	Средняя фактическая скорость частицы, м/с
1	75	1/2000	150
2	83	1/2000	166
3	79	1/2000	158

Таким образом, экспериментальная установка позволяет измерить параметры газа и получить фотографии треков частиц на выходе разгонной трубки.

Рассмотрим процесс разгона частиц. При этом примем следующие допущения:

1. Задача одномерная, рассматриваются осредненные по сечению трубопровода параметры двухфазного потока.

2. Газ и частицы имеют одинаковую температуру, теплообмена с окружающей средой не происходит. Течение газа адиабатическое с трением, полное теплосодержание газа не меняется, т.е. температура торможения газа постоянна $T_0=const.$

$$\frac{4\pi r^3}{3}\rho_t \frac{du}{dt} = \frac{1}{2}C_x \pi r^2 \rho (w-u)^2 + \frac{4\pi r^3}{3}$$

Учитывая, что для воздуха $\rho_t >> \rho$ и разделив обе части уравнения на массу, получим:

$$\frac{du}{dt} = \frac{3}{8}C_x \frac{\rho}{\rho_t} \frac{(w-u)^2}{r} + \frac{3}{2} \frac{\rho}{\rho_t} \frac{dw}{dt}, \qquad (3)$$

Перейдем к переменной х и получим уравнение движения частицы в зависимости от координаты

$$u\frac{du}{dx} = \frac{3}{8}C_x\frac{\rho}{\rho_t}\frac{(w-u)^2}{r} + \frac{3}{2}\frac{\rho}{\rho_t}u\frac{dw}{dx},$$
 (4)

Если в уравнении (4) перейти к относительной скорости частиц j=u/w и приведенной скорости потока $\lambda = w/a_k$ то оно примет вид

3. Объемная концентрация материала низкая, влиянием частиц на характер движения газового потока можно пренебречь.

4. Частицы имеют одинаковый размер, взаимодействием частиц между собой можно пренебречь.

5. При выводе уравнения движения частицы на горизонтальном участке трубы силой тяжести, действующей на частицу, пренебрегаем т.к. она на несколько порядков меньше силы сопротивления.

В рамках, принятых выше допущений уравнение движения частицы в разгонной трубке можно записать в следующем виде [6, 8]

$$=\frac{1}{2}C_{x}\pi r^{2}\rho(w-u)^{2} + \frac{4\pi r^{3}}{3}\rho\frac{dw}{dt} + \frac{2\pi r^{3}}{3}\rho\frac{d(w-u)}{dt}$$
(2)

$$\frac{dj}{dx} = \frac{3}{8}C_x \frac{\rho}{\rho_t} \frac{(1-j)^2}{jr} + \left(\frac{3}{2}\frac{\rho}{\rho_t} - j\right) \frac{d\lambda}{\lambda dx}$$
(5)

Приведенная скорость λ определяется как отношение средней скорости потока w к критической скорости а_к которая определяется соотношением

$$a_k = \sqrt{\frac{2k}{k+1}RT_0} \tag{6}$$

Учитывая, что $j >> 3\rho/2\rho_t$ уравнение (5) примет вид:

$$\frac{dj}{dx} = \frac{3}{8}C_x \frac{\rho}{\rho_t} \frac{(1-j)^2}{jr} - \frac{j}{\lambda} \frac{d\lambda}{dx}.$$
 (7)

Коэффициент сопротивления частиц C_x определим с помощью универсальной зависимости Браура–Мьюса [6] которая справедлива в широком диапазоне чисел Рейнольдса:

$$C_{x}(\lambda, j) = \frac{24}{\text{Re}_{c}(\lambda, j)} + \frac{4}{\sqrt{\text{Re}_{c}(\lambda, j)}} + 0.4. \quad (8)$$

При заданном массовом расходе *G* газа и диаметре *D* трубы критерий Рейнольдса для частицы можно определить по зависимости:

$$\operatorname{Re}_{c}(\lambda, j) = \frac{8rG(1-j)}{\eta(\lambda)\pi D^{2}}.$$
(9)

Уравнение движения сжимаемого газа при движении с трением по трубе полученное из уравнений Бернулли и Дарси-Вейсбаха имеет известный вид

$$\frac{1-\lambda^2}{\lambda^2}\frac{d\lambda}{\lambda} = \frac{k}{k+1}\varsigma(\lambda)\frac{dx}{D}.$$
 (10)

Данное уравнение рассмотрено во многих учебниках по газодинамике [3,4]. При постоянном коэффициенте трения $\zeta = const$, оно интегрируется совместно с уравнением неразрывности и приводит к известному решению

$$\begin{cases} \varphi(\lambda_2) - \varphi(\lambda_3) = \chi \\ p_{02}q(\lambda_2) = p_a q(\lambda_3) \end{cases}$$
(11)

Однако, такой подход не совсем корректен, так как необходимо учитывать изменение коэффициента трения при движении газа в трубопроводе $\varsigma(\lambda)$. При больших скоростях потока, в зависимости от значения числа Рейнольдса коэффициент трения в трубе можно определить по известным зависимостям [3, 4, 5]. Если $4 \cdot 10^3 < Re < 10^5$, то для гладких труб используем зависимость Блазиуса

$$\varsigma(\lambda) = \frac{0.3164}{\text{Re}(\lambda)^{0.25}},$$
 (12)

Если >10⁵, то для гладких труб используем зависимость Никурадзе

$$\varsigma(\lambda) = 0.0032 + 0.221 [\text{Re}(\lambda)]^{-0.237}.$$
 (13)

Критерий Рейнольдса для трубы можно определить по зависимости:

$$\operatorname{Re}(\lambda) = \frac{4G}{\pi D\eta(\lambda)}.$$
 (14)

Вязкость газа зависит от температуры. Коэффициент динамической вязкости газа при температуре $T(\lambda)$ можно определить по формуле Сазерленда

$$\eta(\lambda) = \eta_{H,Y} \frac{T_{H,Y} + C}{T(\lambda) + C} \left[\frac{T(\lambda)}{T_{H,Y}} \right]^{3/2}, \qquad (15)$$

где $\eta_{\mu,y}$ – вязкость при нормальных условиях $T_{\mu,y}$ =273.15 К; С – константа Сазерленда. Для воздуха $\eta_{\mu,y}$ =1.73·10⁻⁵ Па·с.

Таким образом, получаем систему нелинейных обыкновенных дифференциальных уравнений

$$\begin{cases} \frac{dj}{dz} = \frac{1}{2}K(\lambda, j)\varsigma(\lambda) - \frac{j}{\lambda}\frac{d\lambda}{dz} \\ \frac{d\lambda}{dz} = \frac{k}{k+1}\varsigma(\lambda)\frac{\lambda^3}{1-\lambda^2} \end{cases}$$
 (16)

где $K(\lambda, j)$ определяется выражением [1]

$$K(\lambda, j) = \frac{3}{4} \frac{C_x(\lambda, j)}{\varsigma(\lambda)} \frac{(1-j)^2}{j} \frac{\rho(\lambda)}{\rho_t} \frac{D}{r}.$$
 (17)

Решив данную систему ОДУ, можно получить зависимости изменения относительной скорости частицы j(z) и приведенной скорости потока $\lambda(z)$ по длине разгонной трубки. Данную систему ОДУ необходимо решать на участке разгонной трубки от начального сечения 2-2 до конечного сечения 3-3. Как известно из теории эжекторов [3, 4], на участке трубки от сечения сопла *1-1* до сечения 2-2 происходит смешение потоков, а в сечение 2-2 после завершения смешения устанавливается максимальное статическое давление p_2 . Поскольку режим течения сжатого воздуха в разгонной трубке дозвуковой, то на срезе разгонной трубке статическое давление должно быть равно наружному, т.е. атмосферному $p_3 = p_a$. Кроме этого, массовый расход G воздуха задан. Поэтому начальные и граничные условия не могут быть заданы произвольно. Фактически надо решать систему ОДУ с заданными граничными условиями в сечениях 2-2 и 3-3. Поставленная задача относится к задаче Коши с двухточечным граничным условием. Определим граничные условия.

Из уравнения неразрывности для сечения 3-3 можно записать

$$G = m \frac{p_a F}{\sqrt{T_t}} y(\lambda_3). \tag{18},$$

где m – коэффициент (для воздуха m=0.0404 м⁻¹ · с·K^{0.5}), который определяется по зависимости:

$$m = \sqrt{\frac{k}{R} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}.$$
 (19)

Из этого уравнения можно найти сначала газодинамическую функцию $y(\lambda_3)$, а затем λ_3 . Скорость газа в сечении 3-3 найдется по формуле

$$w_3 = \lambda_3 a_k \,. \tag{20}$$

Далее с помощью газодинамической функции $\tau(\lambda_3)$ можно найти температуру газа в сечении 3-3

$$T_3 = T_0 \tau(\lambda_3) \,. \tag{21}$$

Затем по уравнению состояния мы можем найти плотность газа в сечении 3-3

$$\rho_3 = \frac{p_a}{RT_3} (\lambda_3) \,. \tag{22}$$

Полное давление (давление торможения) в сечении 3-3 найдется с помощью газодинамической функции $\pi(\lambda)$

$$p_{03} = p_a \pi(\lambda_3) \,. \tag{23}$$

Таким образом, при заданном расходе газа *G* и статическом давлении *p* в сечении *3*–*3* находятся все параметры газа.

А параметры сжатого воздуха λ_2 , p_2 , p_{02} в сечении 2–2 не известны. Произвольно задавать приведенную скорость или давление в сечении 2–2 нельзя, так как эти параметры зависят от величины потерь давления по длине разгонной трубки. В нашем случае λ_2 можно найти, решив нелинейное уравнение

$$\int_{\lambda_2}^{\lambda_3} \frac{1-\lambda^2}{\lambda^3} \frac{d\lambda}{\varsigma(\lambda)} - \frac{k}{k+1} \frac{L}{D} = 0$$
 (24)

Все параметры в этом уравнении за исключением λ_2 известны. Корень этого нелинейного уравнения можно найти, например, с помощью программы Mathcad или Excel, используя численный метод интегрирования Гаусса.

После нахождения λ_2 можно аналогично найти все параметры газа: w_2 , T_2 , ρ_2 , p_{02} , p_2 в сечении 2–2. Полное давление в сечении 2-2 найдется из уравнения неразрывности

$$P_{02} = \frac{p_a y(\lambda_3)}{q(\lambda_2)}.$$
 (25)

Статическое давление в сечении 2-2 найдется с помощью газодинамической функции $\pi(\lambda_2)$

$$p_2 = \frac{P_{02}}{\pi(\lambda_2)}.$$
 (26)

Решение полученной системы (16) с граничными условиями λ₂ и λ₃ позволяет установить характер, изменения скоростей воздушного потока $\lambda(z)$, w(z) и частицы j(z), u(z). Начальные условия для частицы *j*(0)=*j*₀ варьировались в пределах от 0 до 0,1. При этом выяснилось, что влияние j_0 на конечную скорость разгона незначительно. Следует отметить, что выполнение уравнений (18) и (24) фактически означает решение граничной двухточечной задачи для дифференциального уравнения движения сжимаемого газа по трубе при наличии трения. Найденное значение *j(z)* относительной скорости в сечении 3-3 будет искомой величиной скорости разгона частиц на срезе разгонной трубки. На графиках (рис.4.) приведены результаты решения системы ОДУ (16) с параметрами, которые были выбраны при съемке треков: G =0,0287 кг/с, $p_0 = 2.75$ атм, T = 296 К.

Поскольку расстояние от среза разгонной трубки до преграды в струйной мельнице обычно не превышает 3-5 калибров, то можно было на этом закончить расчет. Однако в эксперименте, зона фотографирования треков частицы лежит в пределах 200 мм от среза разгонной трубки, поэтому для оценки адекватности необходимо рассчитать скорости частиц в зоне свободного истечения струи $w_m(z)$, чтобы затем сравнить с экспериментом.

Для этого воспользуемся известными зависимостями скорости воздушного потока на оси свободной затопленной струи [9]

$$\begin{cases} w(z) = w_0 & npu \ z \le z_H \\ w_m(z) = \frac{0.96}{2az + 0.29} w_0 & npu \ z > z_H \end{cases}, \quad (27)$$

где w_0 – скорость воздушного потока на начальном участке; z_n – длина начального участка в калибрах, в нашем случае $z_n = 4,1875$; a – параметр для осесимметричной струи a = 0,08

Рис. 4. Изменение скорости газа w(z) и скорости частицы u(z) по длине разгонной трубки

Если частица находится не на оси струи, а на некотором от нее расстоянии R, то можно

$$w(z,R) = w_m(z)e^{\frac{-1}{2}\left(\frac{R}{azD}\right)^2} = \frac{0.96}{2az+0.29}w_0e^{\frac{-1}{2}\left(\frac{R}{azD}\right)^2}.$$
(28)

дольной скорости

Скорость частицы $u_m(z)$ находится из решения дифференциального уравнения (16) при постоянной плотности воздуха $\rho = \rho_3$ и начальных условиях $u(0) = u(L_2)$, $w(0) = w(L_2)$

В табл.2 приведено сравнение расчетных и экспериментальных средних скоростей частиц, определенных по трекам.

использовать универсальную формулу для про-

Таблица 2

		_	
Номер		Средняя фактическая	Средняя расчетная
штриха	длина штриха, мм	скорость частицы, м/с	скорость частицы, м/с
1	75	150,0	150,8
2	83	166,0	151,2
3	79	158.0	151.8

Сравнение расчетных и экспериментальных данных

Приведенные данные свидетельствуют о удовлетворительной для инженерных расчетов адекватностью предложенной методики.

На базе приведенной математической модели была исследована зависимость скорости разгона частиц различного диаметра. На рис.5 представлены графики изменения скорости частиц по длине разгонной трубки для частиц различного диаметра при постоянном расходе сжатого воздуха.

Рис. 5. Зависимость скорости частицы u(z) от размера частицы по длине разгонной трубы. G = const

На рис. 6 представлены графики изменения скорости частиц на вылете из разгонной трубки

для частиц различного диаметра при постоянном расходе сжатого воздуха.

Приведенные на рис.6 данные показывают, что максимальная скорость частиц разного диаметра находится в пределах пяти калибров. В соответствии с графиком преграду целесообразно устанавливать на расстоянии не более 5 калибров от среза разгонной трубки.

По данной модели так же исследовалось влияние длины разгонной трубки при фиксированном расходе воздуха (рис. 7). Из графика

следует, что для разгона частиц диаметром dc = 112.5 мкм до максимальной скорости, при заданных параметрах, длина разгонной трубки должна ровняться 38 калибрам. Увеличение длины разгонной трубки, при постоянном расходе, приведет к возрастанию потерь давления на трение по длине и чрезмерному повышению давления p_{02} , то есть к одному из режимов запирания эжектора [3, 4].

Рис. 7. Зависимость максимальной скорости разгона частицы от длины разгонной трубки при постоянном расходе воздуха; dc = 112,5 мкм

Таким образом, получена система уравнений, описывающая процесс разгона частиц в струйной мельнице в рамках одномерной модели. Предложенный метод учитывает влияние сжимаемости воздушного потока и граничные условия в начале и конце разгонной трубки. Метод позволяет рассчитать скорости разгона частиц, параметры газового потока и выбрать оптимальную длину разгонной трубки. Проведенные экспериментальные исследования по измерению скорости частиц подтвердили адекватность расчетной методики, которая может использоваться при разработке и проектировании струйных мельниц.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

 λ – приведенная скорость воздушного потока, $\lambda = w/a_k$;

w – скорость воздушного потока, м/с;

 a_k – критическая скорость, м/с;

z – безразмерная длина, z = x/D;

х – текущая координата сечения, м*;*

k – показатель адиабаты;

 ς – коэффициент трения при движении газа в трубопроводе, $\varsigma = f(Re)$;

 μ – расходная концентрация материала, кг/кг;

j – относительная скорость движения частицы, j=u/w;

 C_X —коэффициент сопротивления частиц, $C_X = f(Re_c);$

 ρ -плотность воздушного потока, $\rho = f(\lambda), \ \kappa r/m^3;$

 ρ_t -плотность частиц, кг/м³;

r – радиус частиц, м;

D – внутренний диаметр трубопровода, м;

*Re, Re*_C – критерий Рейнольдса рассчитанный соответственно для трубопровода и частиц;

 η -коэффициент динамической вязкости газа, Па·с;

p – статическое давление воздушного потока, Па;

R – удельная газовая постоянная, для воздуха R=287,1 Дж/(кг·K);

 $q(\lambda_3), y(\lambda_3), \pi(\lambda_3), \tau(\lambda_3)$ – газодинамические функции;

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Витушкин В.В., Каретников Г.К., Овчинников В.М., Прохоров В.Н., Сутырин И.А. Исследование разгона частиц твердого материала в пневмоструйных измельчителях // Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». 2004. №4. С. 43–56.

2. Акунов В.И. Струйные мельницы. М.: Машиностроение, 1967. 263 с.

3. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1991. 600 с.

4. Дейч М.Е. Техническая газодинамика. Изд. 3-е, перераб. М.: «Энергия», 1974. 592 с. Альтшуль А.Д., Киселев П.Г. Гидравлика и аэродинамика: учебн. пос. для вузов. М.: Стройиздат, 1975. 323 с.

5. Медников Е.П. Турбулентный перенос и осаждение аэрозолей. М.: Наука, 1980. – 176 с.

6. Алхимов А.П., Клинков С.В., В.Ф. Косарев В.Ф., Фомин В.М. Холодное газодинамическое напыление. Теория и практика. М.: Физматлит, 2010. 536 с.

7. Плановский А.Н., Муштаев В.Н., Ульянов В.М. Сушка дисперсных материалов в химической промышленности. М.: Химия, 1979. 288c.

8. Абрамович Г. Н. Теория турбулентных струй. М.: Физматгиз, 1960. 715 с.

9. Шишкин С.Ф., Шишкин А.С. Движение двухфазного потока в трубе постоянного сечения / Физико-химия и технология оксидносиликатных материалов: материалы междунар. науч.-техн. конф. Екатеринбург, 17-19 февр. 2000 г. // Урал. гос. техн. ун-т, Урал. отд-ние Ассоц. строит. вузов РФ. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2000. С. 251.

10. Пирумов У.Г., Росляк Г.С. Газовая динамика сопел. М.: Наука, 1990. 368 с.

Barakovskikh D.S., Shishkin S.F., Shishkin A.S. THE MOVEMENT OF PARTICLES IN THE ACCELERATING TUBE OF THE JET MILL AT **SMALL CONCENTRATION**

The experimental studies of solid particles acceleration process in the ejector jet mill are carried out. The experimental setup allows to vary parameters of the gas stream and to measure the speed of particles at the end of accelerating tube by method of tracks. Close-cut fractions of spherical glass particles were used in the experiments. The equations of the one-dimensional particles movement and gas stream in accelerating tube in terms of friction are received. The calculation method of the solid particles acceleration process taking into account compressibility of the air stream and boundary conditions is offered. The obtained system of equations allows to calculate the change of gas stream speed, density, pressure, temperature and speed of particles along accelerating tube length. The carried-out experimental verification of designed model showed its adequacy. The developed technique allows to make calculation for particles of various diameter, to choose pressure and mass flow rate, and also to determine necessary diameter of nozzle, diameter and length of accelerating tube that will allow to provide maximum efficiency of acceleration process at small consumed concentration of material.

Key words: jet mill, ejector, accelerating tube, movement equation, dispersed particles, compressed gas, speed of particles, method of tracks.

Бараковских Дмитрий Сергеевич, водств.

кафедры оборудования и автоматизации силикатных произ-

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Институт материаловедения и металлургии, департамент строительного материаловедения. Адрес: Россия, 620062, Екатеринбург, ул. Мира, 28 E-mail:d.s.barakovskikh@urfu.ru

силикатных производств.

кандидат технических наук, доцент кафедры оборудования и автоматизации

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Институт материаловедения и металлургии, департамент строительного материаловедения.

Адрес: Россия, 620062, Екатеринбург, ул. Мира, 28 E-mail:shsf@planet-a.ru

кандидат технических наук, доцент кафедры оборудования и автоматизации

силикатных производств. Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Институт материаловедения и металлургии, департамент строительного материаловедения. Адрес: Россия, 620062, Екатеринбург, ул. Мира, 28 E-mail: a.s.shishkin@urfu.ru